首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 90 adolescents from the island of Crete. There were 54 girls and 36 boys, aged 13-18. The mean age was 15.2 years. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Beck Depression Inventory (BDI) and the Center for Epidemiologic Studies Depression Scale (CES-D). Unlike other studies, there were no significant relations between adipose tissue n-3 or n-6 polyunsaturated fatty acids and depression. BDI correlated positively with adipose tissue C20:3n-6/C18:3n-6 ratio, while CES-D correlated positively with adipose tissue (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratio. Depressed subjects (BDI>16, CES-D>16) had significantly elevated adipose tissue C20:3n-6/C18:3n-6 and (C20:3n-6+C22:5n-3)/(C18:3n-6+C20:5n-3) ratios, than non-depressed subjects. The observed positive relation between depression and the particular fatty acid ratios, in the present study, appears to indicate increasing activity of elongases, the enzymes responsible for elongating polyunsaturated fatty acids into their longer-chain derivatives, with increasing depression. This is the first literature report of a possible relation between elongases and depression. The observed relation may stem from a possible over-expression of the HELO1 (ELOVL5) gene, the gene encoding a protein responsible for elongating long-chain polyunsaturated fatty acids, in the adipose tissue of depressed adolescents.  相似文献   

2.
Depression and adipose essential polyunsaturated fatty acids   总被引:2,自引:0,他引:2  
The objective of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake, and depression. The sample consisted of 247 healthy adults (146 males, 101 females) from the island of Crete. The number of subjects with complete data on all variables studied was 139. Subjects were examined at the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the Zung Self-rating Depression Scale. Mildly depressed subjects had significantly reduced (-34.6%) adipose tissue docosahexaenoic acid (DHA) levels than non-depressed subjects. Multiple linear regression analysis indicated that depression related negatively to adipose tissue DHA levels. In line with the findings of other studies, the observed negative relation between adipose tissue DHA and depression, in the present study, appears to indicate increasing long-term dietary DHA intakes with decreasing depression. This is the first literature report of a relation between adipose tissue DHA and depression. Depression has been reported to be associated with increased cytokine production, such as IL-1, IL-2, IL-6, INF-gamma and INF-alpha. On the other hand, fish oil and omega-3 fatty acids have been reported to inhibit cytokine synthesis. The observed negative relation between adipose DHA and depression, therefore, may stem from the inhibiting effect of DHA on cytokine synthesis.  相似文献   

3.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

4.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

5.
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific.  相似文献   

6.
We studied the beneficial effects of dietary consumption of n-3 polyunsaturated fatty acids (PUFA) and two selective estrogen receptor modulator (SERM) derivatives (SERM-I and SERM-II) and their combined effect on serum lipids, skin dermis and adipose layers, bone marrow adipogenesis, and cytokine secretion in mice. Two different ovariectomized (OVX) models were studied: treatment began immediately post-OVX in one and 3 months post-OVX in the other. Our results showed that n-3 PUFA and both SERMs decreased triglyceride levels in the serum, and that SERMs also decreased serum cholesterol levels while n-3 PUFA had no similar effect. SERMs had no effect on IL-6, IL-1 beta, or IL-10 levels, but they decreased ex vivo tumor necrosis factor (TNF-alpha). N-3 PUFA decreased secretion of non-induced IL-6 and TNF-alpha from cultured BMC and IL-1 beta levels in vivo (i.e., in bone marrow plasma), but its main effect was a significant elevation in the secretion of IL-10, a known anti-inflammatory cytokine. OVX-induced B-lymphopoiesis was not affected by LY-139481 (SERM-I) while LY-353381 (SERM-II) exhibited an estrogen-antagonistic effect in sham and OVX mice and elevated the amount of B-cells in bone marrow. Fish oil consumption prevented the elevation in B-lymphopoiesis caused by OVX, but had no curative effect on established augmented B-lymphopoiesis. This activity could be mediated via the elevation of IL-10 which was shown to suppress B-lymphopoiesis. Both SERMs and n-3 PUFA inhibited the increase in adipose tissue thickness caused by OVX in mice. Our results showed that n-3 PUFA, could prevent some of the deleterious outcomes of estrogen deficiency that were not affected by SERMs. We observed no significant beneficial effects of the combined administration of SERM-I, SERM-II, and PUFA on the studied parameters.The exact mechanism by which polyunsaturated fatty acids exert their activities is still not clear, but peroxisome proliferator-activated receptors (PPARs) might be involved in processes which are modulated by n-3 PUFA.  相似文献   

7.
PURPOSE OF REVIEW: There has been much debate over the practical utility of the dietary ratio of n-6 to n-3 polyunsaturated fatty acids in optimizing the benefits of n-3 fatty acids (C18-C22) on cardiovascular health. This review examines the supporting evidence from the OPTILIP study within the context of the emerging consensus on the value of this dietary metric. RECENT FINDINGS: The question of whether the ratio of n-6/n-3 polyunsaturated fatty acids or total amounts of dietary polyunsaturated fatty acids is of more importance to cardiovascular health has been addressed recently in a randomly controlled trial (OPTILIP) and in a stable isotope tracer study. These two studies were independently unanimous in concluding that the ratio of n-6/n-3 polyunsaturated fatty acids is of no value in modifying cardiovascular disease risk. The latter study also showed that the absolute amounts of dietary linoleic acid and alpha-linolenic acid are of relevance to the efficiency of conversion of alpha-linolenic acid to eicosapentaenoic acid and docosahexaenoic acid. SUMMARY: This review should help to settle any outstanding controversy over the dietary ratio of n-6/n-3 polyunsaturated fatty acids. It reinforces current recommendations to increase the consumption of preformed eicosapentaenoic acid/docosahexaenoic acid in fish, and supports dietary measures to increase and decrease intakes alpha-linolenic acid and linoleic acid, respectively, to promote the endogenous synthesis of these longer chain n-3 polyunsaturated fatty acids.  相似文献   

8.
The aim of this study was to determine the time-course incorporation of dietary n-3 polyunsaturated fatty acids into phospholipids of tissues highly involved in lipid and energy metabolism: the liver and the white (WAT) and brown (BAT) adipose tissues. Rats were fed a diet supplemented with 19% fish oil for up to 4 weeks. Minor changes in the relative proportions of tissue phospholipids were observed in the three tissues. Fish-oil feeding induced rapid and large replacements of n-6 fatty acids by n-3 fatty acids. In liver, the 22:6n-3 level increased progressively and reached a plateau after 3 (phosphatidylethanolamine and phosphatidylserine) or 7 days (phosphatidylcholine and phosphatidylinositol). In contrast, the 20:5n-3 level transiently peaked in all liver phospholipids at days 1–3 before reaching a plateau after day 7. In WAT as in BAT the level of n-3 fatty acids increased progressively and reached in all phospholipids a plateau after day 7. As a general trend, in each phospholipid class the 22:6n-3/20:5n-3 ratio was higher in liver than in the two adipose tissues. This study shows that each dietary n-3 fatty acid is incorporated very rapidly into liver, WAT, and BAT phospholipids but according to time courses and at levels that depend simultaneously on the tissue and phospholipid class considered.  相似文献   

9.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

10.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

11.
Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Δ5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships.  相似文献   

12.
The role played by membrane lipid environment on cardiac function remains poorly defined. The polyunsaturated fatty acid profile of myocardial phospholipids could be of utmost importance in the regulation of key-enzyme activities. This study was undertaken to determine whether selective incorporation of n-6 or n-3 fatty acids in membrane phospholipids might influence cardiac mechanical performances and metabolism. For 8 wk, male weaning Wistar rats were fed a semi-purified diet containing either 10% sunflower seed oil (72% C18:2 n-6) or 10% linseed oil (54% C18:3 n-3) as the sole source of lipids. The hearts were then removed and perfused according to working mode with a Krebs-Henseleit buffer containing glucose (11 mM) and insulin (10 Ul/l). Cardiac rate, coronary and aortic flows and ejection fraction were monitored after 30 min of perfusion. Myocardial metabolism was estimated by evaluating the intracellular fate of 1-14C palmitate. Sunflower seed oil and linseed oil feeding did not modify either coronary or aortic flow, which suggests that cardiac mechanical work was not affected by the diets. Conversely, cardiac rate was significantly decreased (-18%; P less than 0.01) when rats were fed the n-3 polyunsaturated fatty acid rich diet. Radioanalysis of the myocardial metabolism suggested that replacing n-6 polyunsaturated fatty acids by n-3 polyunsaturated fatty acids: i) did not alter palmitate uptake; ii) prolonged palmitate incorporation into cardiac triglycerides; iii) reduced beta-oxidation of palmitic acid. These results support the assumption that dietary fatty acids, particularly n-6 and n-3 fatty acids, play an important role in the regulation of cardiac mechanical and metabolic activity.  相似文献   

13.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

14.
15.
The influence of dietary fatty acids on hepatic capacity of lipid synthesis and secretion was investigated in 7-week-old male turkeys. They were fed 10% of either lard (rich in saturated and monounsaturated fatty acids) or linseed oil (rich in polyunsaturated fatty acids, especially 18:3n-3). Fattening was identical with both diets (0.15-0.20% of abdominal adipose tissue), but the proportion of muscle Pectoralis major was lower with linseed oil (6.6 vs. 7.4%). Specific activities of lipogenic enzymes (ME, G6PDH, ACX, and Delta9-desaturase) were not influenced by the diet, however, FAS activity was lower with linseed oil (14.3 vs. 25.4 nM NADPH fixed/min). Fasting concentrations of lipoproteins synthesized and secreted by the liver, VLDL and HDL, were also lower with linseed oil, as well as plasma concentrations of phospholipids and cholesteryl esters. However, when VLDL catabolism was inhibited by injection of an antiserum against LPL, VLDL concentration was identical in both groups (100-120 mg/l), whereas that of phospholipids and cholesteryl esters, that are transported by HDL mainly, remained lower with linseed oil. Thus, in the growing turkeys, and contrary to mammals and the chicken, feeding n-3 polyunsaturated fatty acids did not decrease hepatic triglyceride synthesis and secretion, nor fattening. By contrast, in this species, n-3 polyunsaturated fatty acids appear to influence mostly HDL metabolism, with a negative impact on muscular growth.  相似文献   

16.
Alpha-linolenic acid (18:3n-3) is essential in the human diet, probably because it is the substrate for the synthesis of longer-chain, more unsaturated n-3 fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) which are required for tissue function. This article reviews the recent literature on 18:3n-3 metabolism in humans, including fatty acid beta-oxidation, recycling of carbon by fatty acid synthesis de novo and conversion to longer-chain polyunsaturated fatty acids (PUFA). In men, stable isotope tracer studies and studies in which volunteers increased their consumption of 18:3n-3 show conversion to 20:5n-3 and 22:5n-3, but limited conversion to 22:6n-3. However, conversion to 18:3n-3 to 20:5n-3 and 22:6n-3 is greater in women compared to men, due possibly to a regulatory effect of oestrogen, while partitioning of 18:3n-3 towards beta-oxidation and carbon recycling was lower than in men. These gender differences may be an important consideration in making dietary recommendations for n-3 PUFA intake.  相似文献   

17.
Stearidonic acid (STA; 18:4n-3) and γ-linolenic acid (GLA; 18:3n-6) are significant intermediates in the biosynthetic pathway for the very-long-chain polyunsaturated fatty acids of eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6), respectively. To develop a sustainable system for the production of dietary polyunsaturated fatty acids, we focused on the action of the enzyme delta 6-desaturase (D6DES) on the essential acids, linoleic acid (LA; 18:2n-6) and α-linolenic acid (ALA; 18:3n-3). A 1,335-bp full-length cDNA encoding D6DES (McD6DES) was cloned from Muraenesox cinereus using degenerate PCR and RACE-PCR methods. To investigate the enzymatic activity of McD6DES in the production of n-6 and n-3 fatty acids, a recombinant plasmid expressing McD6DES (pYES-McD6DES) was transformed into and expressed in Saccharomyces cerevisiae. The exogenously expressed McD6DES produced GLA and STA at conversion rates of 14.2% and 45.9%, respectively, from the exogenous LA and ALA substrates. These results indicate that McD6DES is essentially a delta 6-desaturase involved in very-long-chain polyunsaturated fatty acid synthesis.  相似文献   

18.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

19.
Barramundi is a commercially farmed fish in Australia. To examine the potential for barramundi to metabolise dietary α-linolenic acid (ALA, 18:3 n-3), the existence of barramundi desaturase enzymes was examined. A putative fatty acid Δ6 desaturase was cloned from barramundi liver and expressed in yeast. Functional expression revealed Δ6 desaturase activity with both the 18 carbon (C(18)) and C(24) n-3 fatty acids, ALA and 24:5 n-3 as well as the C(18) n-6 fatty, linoleic acid (LA, 18:2 n-6). Metabolism of ALA was favoured over LA. The enzyme also had Δ8 desaturase activity which raises the potential for synthesis in barramundi of omega-3 (n-3) long chain polyunsaturated fatty acids from ALA via a pathway that bypasses the initial Δ6 desaturase step. Our findings not only provide molecular evidence for the fatty acid desaturation pathway in the barramundi but also highlight the importance of taking extracellular fatty acid levels into account when assessing enzyme activity expressed in Saccharomyces cerevisiae.  相似文献   

20.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号