首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescent probes 8-anilino-1-naphthalenesulfonate (ANS) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) bind to highly purified myelin membranes obtained from bovine brain white matter. Binding of the dyes was markedly increased by environmental conditions which reduce the negative surface potential of the membrane, i.e., cations (La-3+ is greater than Ca-2+ is greater than Na-+,K-+), H-+, local anesthetics, and the antibiotic polymyxin B. Chemical alteration of accessible membrane charged groups affected dye binding in a manner consistent with the hypothesis that such binding is primarily dependent upon the membrane surface potential. Thus, binding was increased by blocking of carboxyl groups via carbodiimide activation and subsequent coupling with neutral amino acid esters, and even more so with a basic amino acid ester (e.g., arginine methyl ester). Dye binding was reduced by succinylation of amino groups, and by hydrolysis of choline and ethanolamine head groups of phospho- and sphingolipids by phospholipase C. Phospholipase C treatment of myelin, or sphingomyelin vesicles, reduced or abolished the augmentation of ANS and TNS binding due to cations, local anesthetics, or polymyxin B. Energy transfer from myelin tryptophan residues to bound ANS occurs, but with low efficiency. Oxidation of membrane tryptophan residues with N-bromosuccinimide, or alkylation with 2-hydroxy (or methoxy)-5-nitrobenzyl bromide, markedly reduced intrinsic membrane fluorescence and energy transfer to bound ANS, but did not significantly affect dye binding or the quantum yield of ANS fluorescence when excitation was at 380nm. Proteolytic digestion removed 6-30% of myelin protein, depending upon the enzyme used, but had no effect on fluorescent dye binding. It is concluded that the binding of the anionic fluorescent probes ANS and TNS to myelin is primarily a function of the membrane surface charge density and net surface potential, as is the case with other biological membranes. Conclusions about the degree of dye binding to membrane lipids or membrane proteins cannot be drawn unless additional studies are carried out on isolated water soluble membrane proteins.  相似文献   

2.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1991,30(24):5866-5873
The integral proteolipid apoprotein (PLP) from bovine spinal cord has been reconstituted in dimyristoylphosphatidylglycerol (DMPG) bilayers, and the mutual interactions on binding the peripheral myelin basic protein (MBP) have been studied. Quantitation of protein and lipid contents in the MBP-PLP-DMPG double recombinants at different PLP:DMPG ratios led to the conclusion that MBP binds only to the DMPG lipid headgroups and is hindered from interaction with the first shell of lipids surrounding the PLP. No specific PLP-MBP association could be detected. Electron spin resonance (ESR) spectra of phosphatidylglycerol spin-labeled at position n = 5 in the sn-2 chain showed that complexation of MBP with the PLP-DMPG recombinants leads to a decrease in lipid chain mobility to an extent which correlates with the degree of MBP binding. At low DMPG:PLP ratios, the perturbations of lipid mobility by both proteins are mutually enhanced. In single recombinants of PLP with DMPG, the ESR spectra of phosphatidylglycerol spin-labeled at position n = 14 in the sn-2 chain indicated that approximately 10 lipids/protein are motionally restricted by direct contact with the intramembranous surface of the protein. This number is in agreement with earlier results for reconstitutions of PLP in dimyristoylphosphatidylcholine (DMPC) [Brophy, P. J., Horváth, L. I., & Marsh, D. (1984) Biochemistry 23, 860-865] and is consistent with a hexameric arrangement of the PLP molecules in DMPG bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
cDNA clones of rat brain proteolipid protein (PLP), also named lipophilin, the major integral myelin membrane protein, and of myelin basic protein (MBP), the major extrinsic myelin protein, have been isolated from a rat brain cDNA library cloned into the PstI site of pBR322. Poly(A)+ RNA from actively myelinating 18-day-old rats has been reversely transcribed. Oligonucleotides synthesized according to the established amino-acid sequence of lipophilin and the nucleotide sequence of the small myelin basic protein of the N-terminal, the central and C-terminal region of their sequences were used as hybridization probes for screening. The largest insert in one of several lipophilin clones was 2,585 base pairs (bp) in length (pLp 1). It contained 521 bp of the C-terminal coding sequence and the complete 2,064 bp long non-coding 3' sequence. The myelin basic protein cDNA insert of clones pMBP5 and pMBP6 is 2,530 bp long and that of clones pMBP2 and pMBP3 640 bp. These clones were also characterized. pMBP2 was sequenced and used together with the lipophilin cDNA clones as hybridization probes to estimate the lipophilin and myelin basic protein mRNA levels of rat brain during the myelination period. The expression of the lipophilin and myelin basic protein genes during development of the myelin sheath appears to be strictly coordinated.  相似文献   

5.
Summary

The segregation of proteins to specific cellular membranes is recognized as a common phenomenon. In oligodendrocytes of the central nervous system, localization of certain proteins to select regions of the plasma membrane gives rise to the myelin membrane. Whilst the fundamental structure and composition of myelin is well understood, less is known of the mechanisms by which the constituent proteins are specifically recruited to those regions of plasma membrane that are forming myelin. The two principal proteins of myelin, the myelin basic protein and proteolipid protein, differ greatly in character and sites of synthesis. The message for myelin basic protein is selectively translocated to the ends of the cell processes, where it is translated on free ribosomes and is incorporated directly into the membrane. Proteolipid protein synthesized at the rough endoplasmic reticulum, processed through the Golgi apparatus, and presumably transported via vesicles to the myelin membrane. This review examines the mechanisms by which these two proteins are targeted to the myelin membrane.  相似文献   

6.
Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1.  相似文献   

7.
Characterization of myelin proteolipid mRNAs in normal and jimpy mice.   总被引:12,自引:0,他引:12       下载免费PDF全文
A clone specific for the rat myelin proteolipid protein (PLP) was isolated from a cDNA library made in pUC18 from 17-day-old rat brain stem mRNA. This clone corresponded to the carboxyl-terminal third of the PLP-coding region. The clone was used to identify PLP-specific mRNAs in mouse brain and to establish the time course of PLP mRNA expression during mouse brain development. Three PLP-specific mRNAs were seen, approximately 1,500, 2,400, and 3,200 bases in length, of which the largest was the most abundant. During brain development, the maximal period of PLP mRNA expression was from 14 to 25 days of age, and this was a similar time course to that for myelin basic protein mRNA expression. When the jimpy mouse, an X-linked dysmyelination mutant, was studied for PLP mRNA expression, low levels of PLP mRNA were seen which were approximately 5% of wild-type levels at 20 days of age. When jimpy brain RNA was analyzed by Northern blotting, the PLP-specific mRNA was shown to be 100 to 200 bases shorter than the wild-type PLP-specific mRNA. This size difference was seen in the two major PLP mRNAs, and it did not result from a loss of polyadenylation of these mRNAs.  相似文献   

8.
Acylation of endogenous myelin proteolipid protein with different acyl-CoAs   总被引:8,自引:0,他引:8  
Fatty acyltransferase activity that catalyzes the transfer of palmitic acid from palmitoyl-CoA to the endogenous myelin proteolipid protein has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the acylation of proteolipid protein was obtained in 0.1% Triton X-100, 2 mM MgCl2, and 1 mM dithiothreitol at a pH of 7.5 and at 37 degrees C. Other detergents had little or no effect on the reaction whereas acylation was completely abolished by sodium dodecyl sulphate (0.1%). Pulse-chase experiments indicated that the reaction involves the net addition of fatty acid to the protein and not a rapid fatty acid exchange. The rate of acylation was linear up to 30 min, indicating that the concentration of endogenous protein acceptor was constant. Under these conditions and at short time periods, the enzyme activity versus acyl-CoA concentration showed a hyperbolic curve. The apparent Km and Vmax for palmitoyl-CoA was 41 microM and 115 pmol/mg protein/min. Similar values were obtained for stearoyl and oleoyl-CoA, whereas myristoyl-CoA showed a lower specificity for the enzyme. The acyl-CoA specificity was also studied in competition experiments using several saturated and unsaturated fatty acid-CoAs. The product of the reaction was identified as myelin proteolipid protein and the fatty acid was shown to be attached to the protein via an ester linkage. Limited proteolysis and peptide mapping showed that the same sites on the proteolipid protein were acylated when the reaction was carried out in isolated myelin preparations or in brain tissue slices, suggesting physiological importance for the in vitro acylation of endogenous myelin proteolipid protein.  相似文献   

9.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

10.
MBP and PLP are major structural protein components of myelin. Both proteins play a functional role in formation of myelin sheath and in maintenance of its compaction. Immune responses to MBP and PLP have been implicated in the pathogenesis of multiple sclerosis (MS), an auto-immune disease of the central nervous system. Recombinant forms of both proteins isolated and purified from bacterial or insect cell systems are commonly used to study the specificity of auto-response in MS. We have prepared recombinant forms of MBP and PLP stably expressed in CHO cells. Several clones with proper cytoplasmic MBP or surface PLP localization were obtained and characterized by flow cytometry and indirect immunostaining. CHO cells expressing the recombinant forms of MBP and PLP can be very useful in studies on the autoimmune mechanism of MS.  相似文献   

11.
12.
Abstract— A homogeneous preparation of proteolipid protein (PLP) from rat brain myelin was isolated by preparative gel electrophoresis in sodium dodecyl sulfate and chemically characterized. The results of amino acid and N-terminal amino acid analyses are reported. The same preparation of myelin PLP was used to produce specific precipitating antibodies. Rabbit and goat antisera to myelin PLP each gave a single precipitin line with purified PLP dissolved in Triton X-100. Under identical conditions, no precipitation was observed with antiserum to myelin basic protein or with control serum. Immunofluorescence localization employing antiserum to PLP demonstrated bright specific fluorescence restricted to the myelin sheaths of axons in all anatomical areas of the rat brain examined. Neuronal cell bodies and their dendrites were completely negative with respect to the presence of proteolipid protein. PLP could not be localized in the cell bodies or fibrous processes in any of the glial elements in the adult rat brain. However, myelin PLP was clearly visible in the cytoplasm and processes of actively myelinating oligodendrocytes in the corpus callosum in the brains of 10-day-old rats.  相似文献   

13.
Membrane fractions and chloroform-methanol (C-M) extracts ofjimpy (jp) and normal CNS at 17–20 days were examined by immunoblot and sequence analysis to determine whether myelin proteolipid protein (PLP) or DM-20 could be detected in jp CNS. No reactivity was detected in jp samples with several PLP antibodies (Abs) except with one Ab to amino acids 109–128 of normal PLP. Proteins in the immunoreactive bands 26 Mr comigrating with PLP were sequenced for the first 10–12 residues. A sequence corresponding to PLP was found in normal CNS, as expected, but not in the band from jp CNS. Our results provide no evidence for an aberrant form of PLP in jp CNS at 17–20 days. This and other studies suggest that the abnormalities in jp brain are not due to toxicity of the mutant jp PLP/DM-20 proteins. Interestingly, a sequence identical to the amino terminus of the mature proton channel subunit 9 of mitochondrial F0 ATPase was detected in the immunoreactive bands 26 Mr in both normal and jp samples. This identification was supported by reactivity with an Ab to the F0 subunit and by labeling with dicyclohexylcarbodiimide (DCCD). In contrast to PLP isolated from whole CNS, PLP isolated from myelin was devoid of F0 subunit 9 based on sequence analysis and lack of reactivity with an Ab to the F0 subunit, yet still reacted with DCCD. This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2).Abbreviations used Ab antibody - CM conditioned medium - C M chloroform-methanol - DCCD dicyclohexylcarbodiimide - jp jimpy - Mr mobility (apparent m.w×10–3) - PLP proteolipid protein - PVDF polyvinylidene difluoride  相似文献   

14.
Sedimentation velocity and equilibrium experiments have revealed an extremely pressure-sensitive aggregation of myelin proteolipid protein in the presence of Triton X-100, dissociation of the protein aggregate being observed at pressures that are several orders of magnitude lower than those effecting disaggregation of many other proteins. These results highlight the need to employ a range of angular velocities in sedimentation studies of intrinsic membrane protein.  相似文献   

15.
O A Bizzozero  M B Lees 《Biochemistry》1986,25(22):6762-6768
The effect of covalently bound fatty acid on the conformation of the myelin proteolipid protein has been studied by ultraviolet and intrinsic fluorescence spectroscopy. With dimethyl sulfoxide used as a perturbant, the exposure of Trp and Tyr residues in various mixtures of chloroform-methanol was evaluated by difference spectroscopy of the proteolipid protein (APL) and its chemically deacylated form (d-APL). The fraction of chromophoric groups exposed increased with the proportion of chloroform with 25% of the groups exposed in 1:2 chloroform-methanol and 98% in 3:1 chloroform-methanol. These conformational changes correlate well with changes in intrinsic viscosity. Values for the deacylated form were indistinguishable from those of the acylated protein, suggesting that fatty acids do not affect protein conformation in organic solvents. In water, UV difference spectroscopy indicated that the number of Tyr and Trp groups exposed in both APL and d-APL was relatively small and was independent of the molecular size of the perturbant. However, differences in the environment of the Trp groups in the two forms of the protein could be demonstrated by intrinsic fluorescence. When the protein was excited at 295 nm, the maximum emission wavelength for the acylated protein was 330 nm, whereas it was 335 nm for the deacylated form. Furthermore, the Trp groups in d-APL were more easily quenched by acrylamide than in APL, indicating that they were more exposed, or in a more hydrophilic environment, following deacylation. Protein aggregation appears to be independent of the presence of fatty acids, suggesting that the fluorescence differences between APL and d-APL are related to factors other than aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being 3.58 +/- 0.12 and 2.30 +/- 0.15 for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively 1.34 +/- 0.10 for deoxycholate (at 0.12 ionic strength) and 4.0 +/- 0.5 for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strenght in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and deterent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single poly-peptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules.  相似文献   

17.
Incubation of rat brain myelin with [3H]palmitic acid in the presence of ATP, CoA and MgCl2 or [14C]-palmitoyl-CoA in a cell-free system resulted in the selective labelling of 'PLP' [proteolipid protein; Folch & Lees (1951) J. Biol. Chem. 191, 807-817] and 'DM-20' [Agrawal, Burton, Fishman, Mitchell & Prensky (1972) J. Neurochem. 19, 2083-2089] which, after polyacrylamide-gel electrophoresis in SDS, were revealed by fluorography. These results provide evidence of the association of fatty acid-CoA ligase and acyltransferase in isolated myelin. Palmitic acid is covalently bound to PLP and DM-20, because 70 and 92% of the radioactivity was removed from proteolipid proteins after treatment with hydroxylamine and methanolic NaOH respectively. Incubation of myelin with [3H]palmitic acid in the absence of ATP, CoA, MgCl2, or all three, decreased incorporation of fatty acid into PLP to 3, 55, 18 and 2% respectively. The cell-free system exhibits specificity with respect to the chain length of the fatty acids, since myristic acid is incorporated into PLP at a lower rate when compared with palmitic and oleic acids. The acylation of PLP is an enzymic reaction, since (1) maximum incorporation of [3H]palmitic acid into PLP occurred at physiological temperatures and decreased with an increase in the temperature; (2) acylation of PLP with [3H]palmitic acid and [14C]palmitoyl-CoA was severely inhibited by SDS (0.05%); and (3) the incorporation of fatty acid and palmitoyl-CoA into PLP was substantially decreased by the process of freezing-thawing and freeze-drying of myelin. We have provided evidence that all of the enzymes required for acylation of PLP and DM-20 are present in isolated rat brain myelin. Acylation of PLP in a cell-free system with fatty acids and palmitoyl-CoA suggests that a presynthesized pool of non-acylated PLP and DM-20 is available for acylation.  相似文献   

18.
A protein fatty acylesterase activity that catalyzes the removal of fatty acid from exogenous proteolipid protein (PLP) has been demonstrated in isolated rat brain myelin. Optimum enzyme activity for the deacylation of PLP was obtained in 0.5% Triton X-100, 1 mM dithiothreitol at pH 7.0 and at 37 degrees C. Other detergents (octyl beta-D-glucoside, Nonidet P-40, and Tween 20) have little or no effect, whereas deacylation was completely abolished by 0.1% sodium dodecyl sulfate or boiling the membrane fraction for 5 min prior to incubation. Under optimal conditions, the rate of deacylation was linear up to 20 min, and the apparent Km for bovine [3H]palmitoyl-PLP was 18 microM. The myelin-associated PLP fatty acylesterase has no apparent requirements for divalent cations (Ca2+, Mg2+, Mn2+), and chelators such as EDTA, [ethylenebis(oxyethylenenitrilo)] tetraacetic acid, and 1,10-phenantroline have little or no effect on enzyme activity. Sulfhydryl and histidine residues are needed for full enzyme activity, whereas the "active serine"-directed inhibitor phenylmethylsulfonyl fluoride has no effect. The myelin-associated protein fatty acylesterase was present throughout brain development and in all myelin subfractions, in agreement with the dynamic metabolism of PLP-bound fatty acids. Enzyme activity was also present in sciatic nerve, brain cortex, and heart whereas liver was devoid of activity. Several esterases, including phospholipase A2, glyoxalase II, and acetylcholinesterase, did not remove fatty acid from PLP. Myelin basic protein, palmitoyl-CoA hydrolase, and myelin-associated nonspecific esterase were also ruled out as the PLP fatty acylesterase. Thus, all data seem to indicate that this enzyme is different from esterases of the lipid metabolism. Finally, stimulation of protein phosphorylation with Ca2+, but not with cyclic-AMP, inhibited PLP deacylation, suggesting that the myelin-associated protein fatty acylesterase activity is regulated by endogenous Ca(2+)-dependent protein kinases.  相似文献   

19.
Myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids. A large proportion of these acyl moieties are bound in thioester linkages, as demonstrated by alkylation of newly formed SH groups upon deacylation. To identify the Cys residue(s) involved in the thioester linkage(s), reduced and carboxyamidomethylated proteolipid protein was labeled with [14C]iodoacetamide upon deacylation with neutral hydroxylamine. The labeled protein was digested with trypsin or pepsin, and peptides analyzed by RP-HPLC. Identification of the isolated radioactive peptides by amino acid analysis, peptide sequencing and/or fast-atom bombardment-mass spectrometry revealed that Cys108 in the bovine PLP sequence is an acylated site. The sequence surrounding the palmitoylation site in the myelin PLP is strikingly similar to that found in rhodopsin. Furthermore, as in rhodopsin and other members of the G protein-coupled receptor family, this Cys residue is located within a hydrophilic, basic, and possibly cytoplasmic, domain.  相似文献   

20.
Antibodies to DNAs chemically modified with osmium structural probes   总被引:2,自引:0,他引:2  
It has previously been shown that osmium tetroxide, pyridine (Os,py) and osmium tetroxide, 2,2'-bipyridine (Os,bipy) are powerful probes of the DNA structure. To increase the possibilities of the detection of osmium-modified DNAs polyclonal antibodies against DNA modified with Os,py and Os,bipy were elicited in rabbits. Specificity of these sera or purified IgG was tested by ELISA and retardation of the DNA electrophoretic mobility in agarose gels. Antibodies against DNA-Os,py (anti-DNA-Os,py) reacted with single-stranded and double-stranded DNA-Os,py but they did not react with unmodified DNA; with DNA-Os,bipy only a weak reaction was observed. The specificity of the anti-DNA-Os,bipy was similar. Competition experiments with anti-DNA-Os,py showed a weak reaction with RNA-Os,py but no reaction with osmium-modified proteins and unmodified proteins and RNA. The results suggest that anti-DNA-Os,py may become an important tool in studies of DNA structure in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号