首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gly-952 is a conserved residue in Saccharomyces cerevisiae DNA polymerase alpha (pol alpha) that is strictly required for catalytic activity and for genetic complementation of a pol alpha-deficient yeast strain. This study analyzes the role of Gly-952 by characterizing the biochemical properties of Gly-952 mutants. Analysis of the nucleotide incorporation specificity of pol alpha G952A showed that this mutant incorporates nucleotides with extraordinarily low fidelity. In a steady-state kinetic assay to measure nucleotide misincorporation, pol alpha G952A incorporated incorrect nucleotides more efficiently than correct nucleotides opposite template C, G, and T. The fidelity of the G952A mutant polymerase was highest at template A, where the ratio of incorporation of dCMP to dTMP was as high as 0.37. Correct nucleotide insertion was 500- to 3500-fold lower for G952A than for wild type pol alpha, with up to 22-fold increase in pyrimidine misincorporation. The Km for G952A pol alpha bound to mismatched termini T:T, T:C, C:A, and A:C was 71- to 460-fold lower than to a matched terminus. Furthermore, pol alpha G952A preferentially incorporated pyrimidine instead of dAMP opposite an abasic site, cis-syn cyclobutane di-thymine, or (6-4) di-thymine photoproduct. These data demonstrate that Gly-952 is a critical residue for catalytic efficiency and error prevention in S. cerevisiae pol alpha.  相似文献   

3.
Inhibition of the pre-steady-state burst of nucleotide incorporation by a single incorrect nucleotide (nucleotide discrimination) was measured with the Klenow fragment of DNA polymerase I [KF(exo+)]. For the eight mispairs studied on three DNA sequences, only low levels of discrimination ranging from none to 23-fold were found. The kinetics of dNTP incorporation into the 9/20-mer at low nucleotide concentrations was also determined. A limit of greater than or equal to 250 s-1 was placed on the nucleotide off-rate from the KF(exo+)-9/20-dTTP complex in accord with nucleotide binding being at equilibrium in the overall kinetic sequence. The influence of the relatively short length of the 9/20-mer on the mechanism of DNA replication fidelity was determined by remeasuring important kinetic parameters on a 30/M13-mer with high homology to the 9/20-mer. Pre-steady-state data on the nucleotide turnover rates, the dATP(alpha S) elemental effect, and the burst of dAMP misincorporation into the 30/M13-mer demonstrated that the kinetics were not affected by the length of the DNA primer/template. The effects on fidelity of two site-specific mutations, KF(polA5) and KF(exo-), were also examined. KF(polA5) showed an increased rate of DNA dissociation and a decreased rate of polymerization resulting in less processive DNA synthesis. Nevertheless, with at least one misincorporation event, that of dAMP into the 9/20-mer, KF(polA5) displays an increased replication fidelity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Arana ME  Potapova O  Kunkel TA  Joyce CM 《Biochemistry》2011,50(46):10126-10135
The fidelity of DNA synthesis by A-family DNA polymerases ranges from very accurate for bacterial, bacteriophage, and mitochondrial family members to very low for certain eukaryotic homologues. The latter include DNA polymerase ν (Pol ν) which, among all A-family polymerases, is uniquely prone to misincorporating dTTP opposite template G in a highly sequence-dependent manner. Here we present a kinetic analysis of this unusual error specificity, in four different sequence contexts and in comparison to Pol ν's more accurate A-family homologue, the Klenow fragment of Escherichia coli DNA polymerase I. The kinetic data strongly correlate with rates of stable misincorporation during gap-filling DNA synthesis. The lower fidelity of Pol ν compared to that of Klenow fragment can be attributed primarily to a much lower catalytic efficiency for correct dNTP incorporation, whereas both enzymes have similar kinetic parameters for G-dTTP misinsertion. The major contributor to sequence-dependent differences in Pol ν error rates is the reaction rate, k(pol). In the sequence context where fidelity is highest, k(pol) for correct G-dCTP incorporation by Pol ν is ~15-fold faster than k(pol) for G-dTTP misinsertion. However, in sequence contexts where the error rate is higher, k(pol) is the same for both correct and mismatched dNTPs, implying that the transition state does not provide additional discrimination against misinsertion. The results suggest that Pol ν may be fine-tuned to function when high enzyme activity is not a priority and may even be disadvantageous and that the relaxed active-site specificity toward the G-dTTP mispair may be associated with its cellular function(s).  相似文献   

5.
Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.  相似文献   

6.
Nucleotide incorporation by the herpes simplex virus type 1 DNA polymerase catalytic subunit (pol) is less faithful than for most replicative DNA polymerases, despite the presence of an associated 3'- to 5'-exonuclease (exo) activity. To determine the aspects of fidelity affected by the exo activity, nucleotide incorporation and mismatch extension frequency for purified wild-type and an exo-deficient mutant (D368A) pol were compared using primer/templates that varied at only a single position. For both enzymes, nucleotide discrimination during incorporation occurred predominantly at the level of K(m) for nucleotide and was the major contributor to fidelity. The contribution of the exo activity to reducing the efficiency of formation of half of all possible mispairs was 6-fold or less, and 30-fold when averaged for the formation of all possible mispairs. In steady-state reactions, mismatches imposed a significant kinetic barrier to extension independent of exo activity. However, during processive DNA synthesis in the presence of only three nucleotides, misincorporation and mismatch extension were efficient for both exo-deficient and wild-type pol catalytic subunits, although slower kinetics of mismatch extension by the exo-deficient pol were observed. The UL42 processivity factor decreased the extent of misincorporation by both the wild-type and the exo-deficient pol to similar levels, but mismatch extension by the wild-type pol.UL42 complex was much less efficient than by the mutant pol.UL42. Thus, despite relatively frequent (1 in 300) misincorporation events catalyzed by wild-type herpes simplex virus pol.UL42 holoenzyme, mismatch extension occurs only rarely, prevented in part by the kinetic barrier to extending a mismatch. The kinetic barrier also increases the probability that a mismatched primer terminus will be transferred to the exo site where it can be excised by the associated exo activity and subsequently extended with correct nucleotide.  相似文献   

7.
8.
B T Eger  S J Benkovic 《Biochemistry》1992,31(38):9227-9236
The minimal kinetic mechanism for misincorporation of a single nucleotide (dATP) into a short DNA primer/template (9/20-mer) by the Klenow fragment of DNA polymerase I [KF(exo+)] has been previously published [Kuchta, R. D., Benkovic, P., & Benkovic, S.J. (1988) Biochemistry 27, 6716-6725]. In this paper are presented refinements to this mechanism. Pre-steady-state measurements of correct nucleotide incorporation (dTTP) in the presence of a single incorrect nucleotide (dATP) with excess KF-(exo+) demonstrated that dATP binds to the KF(exo+)-9/20-mer complex in two steps preceding chemistry. Substitution of (alpha S)dATP for dATP yielded identical two-step binding kinetics, removing nucleotide binding as a cause of the elemental effect on the rate of misincorporation. Pyrophosphate release from the ternary species [KF'(exo+)-9A/20-mer-PPi] was found to occur following a rate-limiting conformational change, with this species partitioning equally to either nucleotide via internal pyrophosphorolysis or to misincorporated product. The rate of 9A/20-mer dissociation from the central ternary complex (KF'-9A/20-mer-PPi) was shown to be negligible relative to exonucleolytic editing. Pyrophosphorolysis of the misincorporated DNA product (9A/20-mer), in conjunction with measurement of the rate of dATP misincorporation, permitted determination of the overall equilibrium constant for dATP misincorporation and provided a value similar to that measured for correct incorporation. A step by step comparison of the polymerization catalyzed by the Klenow fragment for correct and incorrect nucleotide incorporation emphasizes that the major source of the enzyme's replicative fidelity arises from discrimination in the actual chemical step and from increased exonuclease activity on the ternary misincorporated product complex owing to its slower passage through the turnover sequence.  相似文献   

9.
10.
Fiala KA  Abdel-Gawad W  Suo Z 《Biochemistry》2004,43(21):6751-6762
DNA polymerase lambda (Pollambda), a member of the X-family DNA polymerases, possesses an N-terminal BRCT domain, a proline-rich domain, and a C-terminal polymerase beta-like domain (tPollambda). In this paper, we determined a minimal kinetic mechanism and the fidelity of tPollambda using pre-steady-state kinetic analysis of the incorporation of a single nucleotide into a one-nucleotide gapped DNA substrate, 21-19/41-mer (primer-primer/template). Our kinetic studies revealed an incoming nucleotide bound to the enzyme.DNA binary complex at a rate constant of 1.55 x 10(8) M(-1) s(-1) to form a ground-state ternary complex while the nucleotide dissociated from this complex at a rate constant of 300 s(-1). Since DNA dissociation from tPollambda (0.8 s(-1)) was less than 3-fold slower than polymerization, we measured saturation kinetics for all 16 possible nucleotide incorporations under single turnover conditions to eliminate the complication resulting from multiple turnovers. The fidelity of tPollambda was estimated to be in the range of 10(-2)-10(-4) and was sequence-dependent. Surprisingly, the ground-state binding affinity of correct (1.1-2.4 microM) and incorrect nucleotides (1.4-8.4 microM) was very similar while correct nucleotides (3-6 s(-1)) were incorporated much faster than incorrect nucleotides (0.001-0.2 s(-1)). Interestingly, the misincorporation of dGTP opposite a template base thymine (0.2 s(-1)) was more rapid than all other misincorporations, leading to the lowest fidelity (3.2 x 10(-2)) among all mismatched base pairs. Additionally, tPollambda was found to possess weak strand-displacement activity during polymerization. These biochemical properties suggest that Pollambda likely fills short-patched DNA gaps in base excision repair pathways and participates in mammalian nonhomologous end-joining pathways to repair double-stranded DNA breaks.  相似文献   

11.
Human DNA polymerase ι (Polι) is a member of the Y family of DNA polymerases involved in translesion DNA synthesis. Polι is highly unusual in that it possesses a high fidelity on template A, but has an unprecedented low fidelity on template T, preferring to misincorporate a G instead of an A. To understand the mechanisms of nucleotide incorporation opposite different template bases by Polι, we have carried out pre-steady-state kinetic analyses of nucleotide incorporation opposite templates A and T. These analyses have revealed that opposite template A, the correct nucleotide is preferred because it is bound tighter and is incorporated faster than the incorrect nucleotides. Opposite template T, however, the correct and incorrect nucleotides are incorporated at very similar rates, and interestingly, the greater efficiency of G misincorporation relative to A incorporation opposite T arises predominantly from the tighter binding of G. Based on these results, we propose that the incipient base pair is accommodated differently in the active site of Polι dependent upon the template base and that when T is the templating base, Polι accommodates the wobble base pair better than the Watson-Crick base pair.  相似文献   

12.
The hepatitis C virus RNA-dependent RNA polymerase NS5B is responsible for the replication of the viral genome. Previous studies have uncovered NTP-mediated excision mechanisms that may be responsible for aiding in maintaining fidelity (the frequency of incorrect incorporation events relative to correct), but little is known about the fidelity of NS5B. In this study, we used transient-state kinetics to examine the mechanistic basis for polymerase fidelity. We observe a wide range of efficiency for incorporation of various mismatched base pairs and have uncovered a mechanism in which the rate constant for pyrophosphate release is slowed for certain misincorporation events. This results in an increase in fidelity against these specific misincorporations. Furthermore, we discover that some mismatches are highly unfavorable and cannot be observed under the conditions used here. The calculated fidelity of NS5B ranges between 10−4–10−9 for different mismatches.  相似文献   

13.
High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3ʹ-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.  相似文献   

14.
The DNA polymerase beta mutant enzyme, which is altered from glutamic acid to lysine at position 249, exhibits a mutator phenotype in primer extension assays and in the herpes simplex virus-thymidine kinase (HSV-tk) forward mutation assay. The basis for this loss of accuracy was investigated by measurement of misincorporation fidelity in single turnover conditions. For the four misincorporation reactions investigated, the fidelity of the E249K mutant was not significantly different from wild type, implying that the mutator phenotype was not caused by a general inability to distinguish between correct and incorrect bases during the incorporation reaction. However, the discrimination between correct and incorrect substrates by the E249K enzyme occurred less during the conformational change and chemical steps and more during the initial binding step, compared with pol beta wild type. This implies that the E249K mutation alters the kinetic mechanism of nucleotide discrimination without reducing misincorporation fidelity. In a missing base primer extension assay, we observed that the mutant enzyme produced mispairs and extended them. This indicates that the altered fidelity of E249K could be due to loss of discrimination against mispaired primer termini. This was supported by the finding that the E249K enzyme extended a G:A mispair 8-fold more efficiently than wild type and a C:T mispair 4-fold more efficiently. These results demonstrate that an enhanced ability to extend mispairs can produce a mutator phenotype and that the Glu-249 side chain of DNA polymerase beta is critical for mispair extension fidelity.  相似文献   

15.
16.
Previous studies indicate that the O-helix of Thermus aquaticus (Taq) DNA polymerase I (pol I) plays an important role in the replication fidelity of the enzyme. This study examines the role of Thr-664, which lies in the middle of the O-helix of Taq pol I. A mutant of Taq Pol I with a proline substitution of Thr-664 (T664P) exhibits much lower replication fidelity than the wild type enzyme in a forward mutation assay. T664P produces base substitution, single-base deletion, and single-base insertion errors at 20-, 5, and 50-fold higher rates than wild type, respectively. In specific activity and steady-state kinetic experiments, T664P was catalytically robust for insertion of correct nucleotides. In contrast, it incorporated incorrect nucleotides 6.1- to 10-fold more efficiently than wild type at a template dC. Mismatched primer termini were extended by T664P 4.2- to 9.5-fold more efficiently than wild type. These data imply that the O-helix with a proline at position 664 functions like wild type Taq pol I for correct nucleotide incorporations, but bends and enlarges the catalytic pocket of the enzyme and increases the rate of nucleotide misincorporation.  相似文献   

17.
18.
Loop II of DNA polymerase beta (pol β) consists of 14 amino acid residues and is highly flexible and solvent exposed. Previous research from our laboratory has shown that this loop is important for polymerase activity and fidelity. In the study presented here, we demonstrate that a shortened five amino acid residue loop compromises the fidelity of pol β. This five-residue loop, termed ENEYP, induces one base frameshift errors and A–C transversions within a specific sequence context. We demonstrate that ENEYP misincorporates dGTP opposite template A at higher efficiencies than wild-type pol β. The kinetic basis for misincorporation is a defect in discrimination of the correct from incorrect dNTP substrate at the level of ground-state binding. Our results are consistent with the idea that loop II of pol β functions to maintain accurate DNA synthesis by a direct or indirect influence on the nucleotide binding pocket.  相似文献   

19.
Nucleotide incorporation fidelity, mismatch extension, and translesion DNA synthesis efficiencies were determined using SOS-induced Escherichia coli DNA polymerases (pol) II, IV, and V to copy 10R and 10S isomers of trans-opened benzo[a]pyrene-7,8-diol 9,10-epoxide (BaP DE) A and G adducts. A-BaP DE adducts were bypassed by pol V with moderate accuracy and considerably higher efficiency than by pol II or IV. Error-prone pol V copied G-BaP DE-adducted DNA poorly, forming A*G-BaP DE-S and -R mismatches over C*G-BaP DE-S and -R correct matches by factors of approximately 350- and 130-fold, respectively, even favoring G*G-BaP DE mismatches over correct matches by factors of 2-4-fold. In contrast, pol IV bypassed G-BaP DE adducts with the highest efficiency and fidelity, making misincorporations with a frequency of 10(-2) to 10(-4) depending on sequence context. G-BaP DE-S-adducted M13 DNA yielded 4-fold fewer plaques when transfected into SOS-induced DeltadinB (pol IV-deficient) mutant cells compared with the isogenic wild-type E. coli strain, consistent with the in vitro data showing that pol IV was most effective by far at copying the G-BaP DE-S adduct. SOS polymerases are adept at copying a variety of lesions, but the relative contribution of each SOS polymerase to copying damaged DNA appears to be determined by the lesion's identity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号