首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre‐emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait‐based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.  相似文献   

2.
Abstract Predators can have strong indirect effects on plants by altering the way herbivores impact plants. Yet, many current evaluations of plant species diversity and ecosystem function ignore the effects of predators and focus directly on the plant trophic level. This report presents results of a 3‐year field experiment in a temperate old‐field ecosystem that excluded either predators, or predators and herbivores and evaluated the consequence of those manipulations on plant species diversity (richness and evenness) and plant productivity. Sustained predator and predator and herbivore exclusion resulted in lower plant species evenness and higher plant biomass production than control field plots representing the intact natural ecosystem. Predators had this diversity‐enhancing effect on plants by causing herbivores to suppress the abundance of a competitively dominant plant species that offered herbivores a refuge from predation risk.  相似文献   

3.
In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.  相似文献   

4.
Interactions among herbivores or between herbivores and other plant natural enemies, such as fungal pathogens, range from competition to facilitation. Moreover, the outcome of these interactions depends on the ecological context where they occur. In this study we examined the effects of clipping, as a surrogate of herbivory by ungulates, on the damage caused by two types of natural enemies (herbivorous insects and foliar fungal pathogens) on bilberry, Vaccinium myrtillus, in combination with nitrogen (N) fertilization representing current N atmospheric deposition. To examine whether the responses of both these natural enemies were mediated by changes in the plant, we estimated the effects of the treatments on bilberry growth and branching and on chlorophyll content as proxy of N content in leaves. Clipping increased the proportion of leaves damaged by herbivorous insects regardless of whether it was combined with N fertilization or not in 2008. In 2007 and 2009 repeated damage to the shrub also facilitated insect herbivory but only under N applications. Regarding fungal infestation incidence, clipping decreased the proportion of infected leaves in all the years considered but only in fertilized plots. Our results suggest that vertebrate herbivores facilitate insect herbivory and reduce fungal infestation but that these effects are dependent on nutritional conditions. Moreover, we found a negative residual correlation between insect herbivory and fungal infestation on bilberry leaves. Therefore, interactions between insect herbivores and fungal pathogens could be implicated in the final outcome of interactions between browsing ungulates and both bilberry natural enemies.  相似文献   

5.
1. Plant stress and association with mycorrhizal fungi have been shown to significantly influence plant quality, yet their roles in influencing plant–insect interactions remain unclear. Even less is known about how these factors might interact with or be modified by within‐trophic level interactions. 2. In the present study, the results of a factorial field experiment are reported in which the effects of within‐trophic‐level interactions, plant stress, and mycorrhizae on three herbivores of Baccharis halimifolia were examined. 3. Plant stress was increased by adding salt to the soil, and availability of mycorrhizal fungi was increased by inoculating plant roots. These treatments were applied to plants with either low or high densities of a competitor (Trirhabda baccharidis). 4. For the two leaf miners, Amauromyza maculosa and Liriomyza trifolii, increased soil salinity and high densities of the competitor Trirhabdabaccharidis resulted in significant decreases in density. Neither of these treatments affected the gall maker Neolasioptera lathami. 5. Mycorrhizal fungi increased the densities of all three herbivores, possibly by increasing foliar nitrogen levels. For the two leaf miners, there was also evidence that mycorrhizae ameliorated the negative effects of salt stress. There was also evidence that high levels of competition dampened the positive effects of mycorrhizae on the two leaf miners.  相似文献   

6.
Traditionally, salt marsh ecosystems were thought to be controlled exclusively by bottom–up processes. Recently, this paradigm has shifted to include top–down control as an additional primary factor regulating salt‐marsh community structure. The most recent research on consumer impacts in southern US marshes has shown that top–down forces often interact with biotic and abiotic factors, such as secondary fungal infection in grazer‐induced wounds, soil nutrients and climatic variation, to influence ecosystem structure. In a more northern salt marsh, located in New England, we examined the separate and interactive effects of nutrient availability, insect herbivory and secondary fungal infection, on growth of the foundation species, Spartina alterniflora. We used a factorial design with two levels of nutrients (control and addition) insects (control and removal) and fungi (control and removal). Nutrient addition increased plant biomass by 131% in the absence of herbivores. When insect consumers were allowed access to fertilized plots, biomass was reduced by nearly 45% when compared with treatments with nutrients and insecticide. In contrast, insect herbivores did not affect plant biomass in unfertilized control treatments. These differences suggest that consumer effects are triggered under high nutrient levels only. We also found that secondary fungal infections in grazer‐induced wounds, in contrast to lower latitude marshes, did not significantly impact primary production. Our results suggest that while New England salt marshes may typically be under bottom–up control, eutrophication can trigger dual control with inclusion of top–down regulation. However, unlike lower latitude marshes, consumer control of plant growth in northern US salt marshes is not dependent on herbivores facilitating fungal infections that then control grass growth, suggesting that the intensity of disease mediated top–down control by small grazers may be regulated by climate and/or grazer identity that co‐vary with latitude.  相似文献   

7.
Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.  相似文献   

8.
Three components of global change, elevated CO2, nitrogen addition, and decreased plant species richness (‘diversity’), increased the percent leaf area infected by fungi (pathogen load) for much to all of the plant community in one year of a factorial grassland experiment. Decreased plant diversity had the broadest effect, increasing pathogen load across the plant community. Decreased diversity increased pathogen load primarily by allowing remaining plant species to increase in abundance, facilitating spread of foliar fungal pathogens specific to each plant species. Changes in plant species composition also strongly influenced community pathogen load, with communities that lost less disease prone plant species increasing more in pathogen load. Elevated CO2 increased pathogen load of C3 grasses, perhaps by decreasing water stress, increasing leaf longevity, and increasing photosynthetic rate, all of which can promote foliar fungal disease. Decreased plant diversity further magnified the increase in C3 grass pathogen load under elevated CO2. Nitrogen addition increased pathogen load of C4 grasses by increasing foliar nitrogen concentration, which can enhance pathogen infection, growth, and reproduction. Because changes in foliar fungal pathogen load can strongly influence grassland ecosystem processes, our study suggests that increased pathogen load can be an important mechanism by which global change affects grassland ecosystems.  相似文献   

9.
To address how multiple, interacting climate drivers may affect plant–insect community associations, we sampled insects that naturally colonized a constructed old‐field plant community grown for over 2 years under simultaneous CO2, temperature, and water manipulation. Insects were sampled using a combination of sticky traps and vacuum sampling, identified to morphospecies and the insect community with respect to abundance, richness, and evenness quantified. Individuals were assigned to four broad feeding guilds in order to examine potential trophic level effects. Although there were occasional effects of CO2 and water treatment, the effects of warming on the insect community were large and consistent. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Nonmetric multidimensional scaling found that only temperature affected insect community composition, while a Sørensen similarity index showed less correspondence in the insect community between temperature treatments compared with CO2 or soil water treatments. Within the herbivore guild, elevated temperature significantly reduced richness and evenness. Corresponding reductions of diversity measures at higher trophic levels (i.e. parasitoids), along with the finding that herbivore richness was a significant predictor of parasitoid richness, suggest trophic‐level effects within the insect community. When the most abundant species were considered in temperature treatments, a small number of species increased in abundance at elevated temperature, while others declined compared with ambient temperature. Effects of temperature in the dominant insects demonstrated that treatment effects were limited to a relatively small number of morphospecies. Observed effects of elevated CO2 concentration on whole‐community foliar N concentration did not result in any effect on herbivores, which are probably the most susceptible guild to changes in plant nutritional quality. These results demonstrate that climatic warming may alter certain insect communities via effects on insect species most responsive to a higher temperature, contributing to a change in community structure.  相似文献   

10.
Insect herbivores and fungal pathogens can independently affect plant fitness, and may have interactive effects. However, few studies have experimentally quantified the joint effects of insects and fungal pathogens on seed production in non-agricultural populations. We examined the factorial effects of insect herbivore exclusion (via insecticide) and fungal pathogen exclusion (via fungicide) on the population-level seed production of four common graminoid species (Andropogon gerardii, Schizachyrium scoparium, Poa pratensis, and Carex siccata) over two growing seasons in Minnesota, USA. We detected no interactive effects of herbivores and pathogens on seed production. However, the seed production of all four species was affected by either insecticide or fungicide in at least one year of the study. Insecticide consistently doubled the seed production of the historically most common species in the North American tallgrass prairie, A. gerardii (big bluestem). This is the first report of insect removal increasing seed production in this species. Insecticide increased A. gerardii number of seeds per seed head in one year, and mass per seed in both years, suggesting that consumption of flowers and seed embryos contributed to the effect on seed production. One of the primary insect species consuming A. gerardii flowers and seed embryos was likely the Cecidomyiid midge, Contarinia wattsi. Effects on all other plant species varied among years. Herbivores and pathogens likely reduce the dispersal and colonization ability of plants when they reduce seed output. Therefore, impacts on seed production of competitive dominant species may help to explain their relatively poor colonization abilities. Reduced seed output by dominant graminoids may thereby promote coexistence with subdominant species through competition-colonization tradeoffs.  相似文献   

11.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

12.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

13.
Disturbances have long been recognized as important forces for structuring natural communities but their effects on trophic structure are not well understood, particularly in terrestrial systems. This is in part because quantifying trophic linkages is a challenge, especially for small organisms with cryptic feeding behaviors such as insects, and often relies on conducting labor‐intensive feeding trials or extensive observations in the field. In this study, we used stable isotopes of carbon and nitrogen to examine how disturbance (annual biomass harvesting) in tallgrass prairies affected the trophic position, trophic range, and niche space of ants, a widespread grassland consumer. We hypothesized that biomass harvest would remove important food and nesting resources of insects thus affecting ant feeding relationships and trophic structure. We found shifts in the feeding relationships inferred by isotopic signatures with harvest. In particular, these shifts suggest that ants within harvest sites utilized resources at lower trophic levels (possibly plant‐based resources or herbivores), expanded trophic breadth, and occupied different niche spaces. Shifts in resource use following harvest could be due to harvest‐mediated changes in both the plant and arthropod communities that might affect the strength of competition or alter plant nitrogen availability. Because shifts in resource use alter the flow of nutrients across the food web, disturbance effects on ants could have ecosystem‐level consequences through nutrient cycling.  相似文献   

14.
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.  相似文献   

15.
The virulence evolution of multiple infections of parasites from the same species has been modeled widely in evolution theory. However, experimental studies on this topic remain scarce, particularly regarding multiple infections by different parasite species. Here, we characterized the virulence and community dynamics of fungal pathogens on the invasive plant Ageratina adenophora to verify the predictions made by the model. We observed that A. adenophora was highly susceptible to diverse foliar pathogens with mixed vertical and horizontal transmission within leaf spots. The transmission mode mainly determined the pathogen community structure at the leaf spot level. Over time, the pathogen community within a leaf spot showed decreased Shannon diversity; moreover, the vertically transmitted pathogens exhibited decreased virulence to the host A. adenophora, but the horizontally transmitted pathogens exhibited increased virulence to the host. Our results demonstrate that the predictions of classical models for the virulence evolution of multiple infections are still valid in a complex realistic environment and highlight the impact of transmission mode on disease epidemics of foliar fungal pathogens. We also propose that seedborne fungi play an important role in structuring the foliar pathogen community from multiple infections within a leaf spot.  相似文献   

16.
Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two‐ and three‐trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si‐mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical‐mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores.  相似文献   

17.
Theory predicts that consumers may stabilise or destabilise plant production depending on model assumptions, and tests in aquatic food webs suggest that trophic interactions are stabilising. We quantified the effects of trophic interactions on temporal variability (standard deviation) and temporal stability (mean/standard deviation) of grassland biomass production and the plant diversity–stability relationship by experimentally removing heterotrophs (large vertebrates, arthropods, foliar and soil fungi) from naturally and experimentally assembled grasslands of varying diversity. In both grassland types, trophic interactions proportionately decreased plant community biomass mean and variability over the course of 6 years, leading to no net change in temporal stability or the plant diversity–stability relationship. Heterotrophs also mediated plant coexistence; their removal reduced diversity in naturally assembled grasslands. Thus, herbivores and fungi reduce biomass production, concurrently reducing the temporal variability of energy and material fluxes. Because of this coupling, grassland stability is robust to large food web perturbations.  相似文献   

18.
Aboveground fungal pathogens can substantially reduce biomass production in grasslands. However, we lack a mechanistic understanding of the drivers of fungal pathogen infection and impact. Using a grassland global change and biodiversity experiment we show that the trade‐off between plant growth and defense is the main determinant of infection incidence. In contrast, nitrogen addition only indirectly increased incidence via shifting plant communities towards faster growing species. Plant diversity did not decrease incidence, likely because spillover of generalist pathogens or dominance of susceptible plants counteracted negative diversity effects. A fungicide treatment increased plant biomass production and high levels of infection incidence were associated with reduced biomass. However, pathogen impact was context dependent and infection incidence reduced biomass more strongly in diverse communities. Our results show that a growth‐defense trade‐off is the key driver of pathogen incidence, but pathogen impact is determined by several mechanisms and may depend on pathogen community composition.  相似文献   

19.

Background

Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.

Methodology/Principal Findings

Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.

Conclusions/Significance

Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations.  相似文献   

20.
The foliar surface forms one of the largest aboveground habitats on Earth and maintains plant-fungus relationships that greatly affect ecosystem functioning. Despite many studies with particular plant species, the foliar epiphytic mycobiome has not been studied across a large number of plant species from different taxa. Using high-throughput sequencing, we assessed epiphytic mycobiomes on leaf surfaces of 592 plant species in a botanical garden. Plants of angiosperms, gymnosperms, and pteridophytes were involved. Plant taxonomy, leaf side, growing environment, and evolutionary relationships were considered. We found that pteridophytes showed the higher fungal species diversity, stronger mutualistic fungal interactions, and a greater percentage of putative pathogens than gymnosperms and angiosperms. Plant taxonomic group, leaf side, and growing environment were significantly associated with the foliar epiphytic mycobiome, but the similarity of the mycobiomes among plants was not directly related to the distance of the host evolutionary tree. Our results provide a general understanding of the foliar fungal mycobiomes from pteridophytes to angiosperms. These findings will facilitate our understanding of foliar fungal epiphytes and their roles in plant communities and ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号