共查询到20条相似文献,搜索用时 8 毫秒
1.
Pfcrt and pfmdr1 alleles associated with chloroquine resistance in Plasmodium falciparum from Guyana, South America 总被引:3,自引:0,他引:3
Best Plummer W Pinto Pereira LM Carrington CV 《Memórias do Instituto Oswaldo Cruz》2004,99(4):389-392
Using DNA extracted from 112 parasitised blood blots, we screened for the population marker of chloroquine resistance (CQR) pfcrt K76T in Plasmodium falciparum infections from Guyana. Pfmdr1 mutations S1034C, N1042D, and D1246Y also associated with CQR were surveyed as well in 15 isolates for which the in vitro responses to CQ were known. Results indicate that the pfcrt K76T is ubiquitous in this environment, and confirmatory sequencing of codons 72 and 76 revealed two novel allelic sequences SVMIT and RVMNT in addition to the previously identified CVMNT and SVMNT haplotypes. The frequency of the pfcrt K76T despite its presence in both CQR and CQS (chloroquine sensitive) infections measured in vivo and in vitro, suggests that it is a useful population marker in this low-transmission setting of sweeping CQR. 相似文献
2.
The emergence and spread of multidrug resistant Plasmodium falciparum has severely limited the therapeutic options for the treatment of malaria. With ever-increasing failure rates associated with chloroquine or sulphadoxine-pyrimethamine treatment, attention has turned to the few alternatives, which include quinine and mefloquine. Here, we have investigated the role of pfmdr1 3' coding region point mutations in antimalarial drug susceptibility by allelic exchange in the GC03 and 3BA6 parasite lines. Results with pfmdr1-recombinant clones indicate a significant role for the N1042D mutation in contributing to resistance to quinine and its diastereomer quinidine. The triple mutations S1034C/N1042D/D1246Y, highly prevalent in South America, were also found to enhance parasite susceptibility to mefloquine, halofantrine and artemisinin. pfmdr1 3' mutations showed minimal effect on P. falciparum resistance to chloroquine or its metabolite mono-desethylchloroquine in these parasite lines, in contrast to previously published results obtained with 7G8 parasites. This study supports the hypothesis that pfmdr1 3' point mutations can significantly affect parasite susceptibility to a wide range of antimalarials in a strain-specific manner that depends on the parasite genetic background. 相似文献
3.
Spread of chloroquine resistance in Plasmodium falciparum 总被引:14,自引:0,他引:14
Payne D 《Parasitology today (Personal ed.)》1987,3(8):241-246
Malaria resistant to chloroquine has now been confirmed in more than 40 countries. The drug was introduced in 1934, but was not in large-scale use until the early 1950s. Anecdotal reports suggest that resistance emerged as early as 1957 both in Colombia and along the then Cambodia-Thailand border area. But by 1960, resistance in these areas was confirmed - and may represent two separate events. Resistance spread rapidly, with a new focus of resistance confirmed in East Africa by 1977. Chloroquine resistance represents a severe problem both for prophylaxis and treatment of malaria. In this aricle, David Payne traces the spread of resistance and discusses some of its implications. 相似文献
4.
Rosenberg E Litus I Schwarzfuchs N Sinay R Schlesinger P Golenser J Baumeister S Lingelbach K Pollack Y 《The Journal of biological chemistry》2006,281(37):27039-27045
Heavy metals are required by all organisms for normal function, but high levels of heavy metals are toxic. Therefore, homeostasis of these metals is crucial. In the human malaria-causing agent Plasmodium falciparum, the mechanisms of heavy metal transport have yet to be characterized. We have developed a P. falciparum line resistant to heavy metals from a wild-type line sensitive to heavy metals. A molecular and biochemical analysis of the involvement of the P. falciparum multidrug resistance 2 (pfmdr2) gene, an ABC-type transporter, in heavy metal homeostasis was studied. Using a novel uptake assay applied on these two strains, it was demonstrated that, when exposed to heavy metals, the sensitive line accumulates metal, whereas no accumulation was observed in the resistant line. The accumulation occurs within the parasite itself and not in the cytoplasm of the red blood cell. This difference in the accumulation pattern is not a result of amplification of the pfmdr2 gene or of a change in the expression pattern of the gene in the two lines. Sequencing of the gene from both lines revealed a major difference; a stop codon is found in the sensitive line upstream of the normal termination, resulting in a truncated protein that lacks 188 amino acids that contain a portion of the essential cytoplasmatic transporter domain, thereby rendering it inactive. In contrast, the resistant line harbors a full-length, active protein. These findings strongly suggest that the PFMDR2 protein acts as an efflux pump of heavy metals. 相似文献
5.
Several models describing how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Further progress requires molecular analysis of interactions between purified reconstituted PfCRT protein and these drugs. We have thus designed and synthesized several perfluorophenyl azido (pfpa) CQ analogues for PfCRT photolabeling studies. One particularly useful probe (AzBCQ) places the pfpa group at the terminal aliphatic N of CQ via a flexible four-carbon ester linker and includes a convenient biotin tag. This probe photolabels PfCRT in situ with high specificity. Using reconstituted proteoliposomes harboring partially purified recombinant PfCRT, we analyze AzBCQ photolabeling versus competition with CQ and other drugs to probe the nature of the CQ binding site. We also inspect how pH, the chemoreversal agent verapamil (VPL), and various amino acid mutations in PfCRT that cause CQ resistance (CQR) affect the efficiency of AzBCQ photolabeling. Upon gel isolation of AzBCQ-labeled PfCRT followed by trypsin digestion and mass spectrometry analysis, we are able to define a single AzBCQ covalent attachment site lying within the digestive vacuolar-disposed loop between putative helices 9 and 10 of PfCRT. Taken together, the data provide important new insight into PfCRT function and, along with previous results, allow us to propose a model for a single CQ binding site in the PfCRT protein. 相似文献
6.
de Monbrison F Raynaud D Latour-Fondanaiche C Staal A Favre S Kaiser K Peyron F Picot S 《Journal of microbiological methods》2003,54(3):391-401
Plasmodium falciparum drug resistance is a major problem in malaria endemic areas. Molecular markers and in vitro tests have been developed to study and monitor drug resistance. However, none, used alone, can provide sufficient data concerning the level of drug resistance and to issue precise guidelines for drug use policies in endemic areas. We propose real-time PCR for the simultaneous detection of pfcrt and pfmdr1 genes mutations and to determine the half-maximal inhibitory response (IC(50)) of antimalarial drug. Using hybridization probes and SybrGreen technology on LightCycler instrument, point mutations of pfcrt and pfmdr1 genes have been successfully detected in 161 human blood samples and determination of IC values was applied to chloroquine-sensitive and chloroquine-resistant strains. Moreover, mixed infections caused by P. falciparum clones with wild-type or mutant alleles could be efficiency separated. The aim of this study was not to provide definitive data concerning the rate of mutations in an endemic area, but to describe a powerful method allowing the quantification of DNA for IC(50) determination and the detection of major pfmdr1 and pfcrt mutations. 相似文献
7.
Selection for high-level chloroquine resistance results in deamplification of the pfmdr1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. 下载免费PDF全文
A chloroquine resistant cloned isolate of Plasmodium falciparum, FAC8, which carries an amplification in the pfmdr1 gene was selected for high-level chloroquine resistance, resulting in a cell line resistant to a 10-fold higher concentration of chloroquine. These cells were found to have lost the amplification in pfmdr1 and to no longer over-produce the protein product termed P-glycoprotein homologue 1 (Pgh1). The pfmdr1 gene from this highly resistant cell line was not found to encode any amino acid changes that would account for increased resistance. Verapamil, which reverses chloroquine resistance in FAC8, also reversed high-level chloroquine resistance. Furthermore, verapamil caused a biphasic reversal of chloroquine resistance as the high-level resistance was very sensitive to low amounts of verapamil. These data suggest that over-expression of the P-glycoprotein homologue is incompatible with high levels of chloroquine resistance. In order to show that these results were applicable to other chloroquine selected lines, two additional mutants were selected for resistance to high levels of chloroquine. In both cases they were found to deamplify pfmdr1. Interestingly, while the level of chloroquine resistance of these mutants increased, they became more sensitive to mefloquine. This suggests a linkage between the copy number of the pfmdr1 gene and the level of chloroquine and mefloquine resistance. 相似文献
8.
Recently, mutations in the novel polytopic integral membrane protein PfCRT were shown to cause chloroquine resistance (CQR) in the malarial parasite Plasmodium falciparum. PfCRT is not a member of the well-known family of ABC proteins that have previously been associated with other drug resistance phenomena. Thus, the mechanism(s) whereby mutant PfCRT molecules confer antimalarial drug resistance is (are) unknown. Previously, we succeeded in overexpressing PfCRT to high levels in Pichia pastoris yeast by synthesizing a codon-optimized version of the pfcrt gene. Using purified membranes and inside-out plasma membrane vesicles (ISOV) isolated from strains harboring either wild-type or CQR-associated mutant PfCRT, we now show that under deenergized conditions the PfCRT protein specifically binds the antimalarial drug chloroquine (CQ) with a K(D) near 400 nM but does not measurably bind the related drug quinine (QN) at physiologically relevant concentrations. Transport studies using ISOV show that QN is passively accumulated as expected on the basis of previous measurement of the ISOV DeltapH for the different strains. However, passive accumulation of CQ is lower than expected for ISOV harboring mutant PfCRT, despite higher DeltapH for these ISOV. 相似文献
9.
10.
Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter 下载免费PDF全文
Ines Petersen Stanislaw J. Gabryszewski Geoffrey L. Johnston Satish K. Dhingra Andrea Ecker Rebecca E. Lewis Mariana Justino de Almeida Judith Straimer Philipp P. Henrich Eugene Palatulan David J. Johnson Olivia Coburn‐Flynn Cecilia Sanchez Adele M. Lehane Michael Lanzer David A. Fidock 《Molecular microbiology》2015,97(2):381-395
The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within‐host competition with wild‐type drug‐sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild‐type pfcrt in co‐culture competition assays. These three alleles mediated cross‐resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first‐line artemisinin‐based combination therapy. These data reveal ongoing region‐specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine‐resistant malaria. 相似文献
11.
Resistance to chloroquine of malaria strains is known to be associated with a parasite protein named PfCRT, the mutated form of which is able to reduce chloroquine accumulation in the digestive vacuole of the pathogen. Whether the protein mediates extrusion of the drug acting as a channel or as a carrier and which is the protonation state of its chloroquine substrate is the subject of a scientific debate. We present here an analytical approach that explores which combination of hypotheses on the mechanism of transport and the protonation state of chloroquine are consistent with available equilibrium experimental data. We show that the available experimental data are not, by themselves, sufficient to conclude whether the protein acts as a channel or as a transporter, which explains the origin of their different interpretation by different authors. Interestingly, though, each of the two models is only consistent with a subset of hypotheses on the protonation state of the transported molecule. The combination of these results with a sequence and structure analysis of PfCRT, which strongly suggests that the molecule is a carrier, indicates that the transported species is either or both the mono and di-protonated forms of chloroquine. We believe that our results, besides shedding light on the mechanism of chloroquine resistance in P. falciparum, have implications for the development of novel therapies against resistant malaria strains and demonstrate the usefulness of an approach combining systems biology strategies with structural bioinformatics and experimental data. 相似文献
12.
Anne Purfield Amy Nelson Anita Laoboonchai Kanungnij Congpuong Phillip McDaniel R Scott Miller Kathy Welch Chansuda Wongsrichanalai Steven R Meshnick 《Malaria journal》2004,3(1):1-6
Background
The erythrocyte binding antigen-175 (EBA-175) on Plasmodium falciparum merozoites mediates sialic acid dependent binding to glycophorin A on host erythrocytes and, therefore, plays a crucial role in cell invasion. Dimorphic allele segments have been found in its encoding gene with a 342 bp segment present in FCR-3 strains (F-segment) and a 423 bp segment in CAMP strains (C-segment). Possible associations of the dimorphism with severe malaria have been analysed in a case-control study in northern Ghana.Methods
Blood samples of 289 children with severe malaria and 289 matched parasitaemic but asymptomatic controls were screened for eba- 175 F- and C-segments by nested polymerase chain reaction.Results
In children with severe malaria, prevalences of F-, C- and mixed F-/C-segments were 70%, 19%, and 11%, respectively. The C-segment was found more frequently in severe malaria cases whereas mixed infections were more common in controls. Infection with strains harbouring the C-segment significantly increased the risk of fatal outcome.Conclusion
The results show that the C-segment is associated with fatal outcome in children with severe malaria in northern Ghana, suggesting that it may contribute to the virulence of the parasite. 相似文献13.
Rohrbach P Sanchez CP Hayton K Friedrich O Patel J Sidhu AB Ferdig MT Fidock DA Lanzer M 《The EMBO journal》2006,25(13):3000-3011
The P-glycoprotein homolog of the human malaria parasite Plasmodium falciparum (Pgh-1) has been implicated in decreased susceptibility to several antimalarial drugs, including quinine, mefloquine and artemisinin. Pgh-1 mainly resides within the parasite's food vacuolar membrane. Here, we describe a surrogate assay for Pgh-1 function based on the subcellular distribution of Fluo-4 acetoxymethylester and its free fluorochrome. We identified two distinct Fluo-4 staining phenotypes: preferential staining of the food vacuole versus a more diffuse staining of the entire parasite. Genetic, positional cloning and pharmacological data causatively link the food vacuolar Fluo-4 phenotype to those Pgh-1 variants that are associated with altered drug responses. On the basis of our data, we propose that Pgh-1 imports solutes, including certain antimalarial drugs, into the parasite's food vacuole. The implications of our findings for drug resistance mechanisms and testing are discussed. 相似文献
14.
Musset L Bouchaud O Matheron S Massias L Le Bras J 《Microbes and infection / Institut Pasteur》2006,8(11):2599-2604
Plasmodium falciparum resistance to atovaquone-proguanil has so far been associated with Y268S or Y268N mutations in cytochrome b, although these changes were identified in only seven of the 11 treatment failures. Here, we describe 10 new cases of atovaquone-proguanil treatment failures among which the parasite resistance was confirmed in six cases, either by identifying correct plasma drug concentrations or by observing in vitro atovaquone resistance. Resistance was consistently associated with codon 268 mutations (Y268S or a previously unidentified mutation, Y268C). Notably, mutations were not detected before the treatment but only after the drug exposure. 相似文献
15.
Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials. PfCRT, an integral membrane protein with 10 predicted transmembrane domains, is a member of the drug/metabolite transporter superfamily and is located on the membrane of the intra-erythrocytic parasite's digestive vacuole. Specific polymorphisms in PfCRT are tightly correlated with chloroquine resistance. Transfection studies have now proven that pfcrt mutations confer verapamil-reversible chloroquine resistance in vitro and reveal their important role in resistance to quinine. Available evidence is consistent with the view that PfCRT functions as a transporter directly mediating the efflux of chloroquine from the digestive vacuole. 相似文献
16.
Hyde JE 《Parasitology today (Personal ed.)》1989,5(8):252-255
Pyrimethamine was first introduced as a prophylactic antimalarial in 1952, with the advantages of low toxicity and freedom from side-effects. As early as the mid-1950s, parasite resistance to this compound had been reported from several areas, and it has since become widespread on all continents where malaria is found. Although it is still used for the suppression of infection, predominantly in conjunction with sulphone or sulphonamide drugs, even these combinations are now useless in many areas. Pyrimethamine resistance is less important globally than resistance to the major curative drug chloroquine, but it has long tantalized molecular parasitologists because pyrimethamine belongs to the only class of antimalarials for which the target molecule is unambiguously known. 相似文献
17.
Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events. 总被引:9,自引:0,他引:9 下载免费PDF全文
The multidrug resistance (MDR) phenotype in mammalian tumor cells can involve amplification of mdr genes that results in overexpression of the protein product termed P-glycoprotein. Chloroquine resistance (CQR) in Plasmodium falciparum has similarities with the MDR phenotype in tumor cells, and some isolates of P. falciparum have amplified levels of the pfmdr1 gene. To investigate the nature and origin of pfmdr1 amplicons, we have cloned large regions of a 110-kb amplicon from the CQR cloned isolate B8 by using the yeast artificial chromosome system. We have identified and sequenced the breakpoints of the amplicon by a novel method employing inverted polymerase chain reaction that is applicable to analysis of any large-scale repeat. We show that the five copies of the amplicon in this isolate are in a head to tail configuration. A string of 30 A's flank the breakpoints on each side of the amplified segment, suggesting a mechanism for the origin of the tandem amplification. Polymerase chain reaction analysis with oligonucleotides that cross the B8 breakpoint has shown in 26 independent CQR isolates, 16 of which contain amplified copies of pfmdr1, that amplification of the pfmdr1 gene in P. falciparum has arisen as multiple independent events. These results suggest that this region of the genome is under strong selective pressure. 相似文献
18.
The bla(TEM-1) beta-lactamase gene has become widespread due to the selective pressure of beta-lactam use and its stable maintenance on transferable DNA elements. In contrast, bla(SME-1) is rarely isolated and is confined to the chromosome of carbapenem-resistant Serratia marcescens strains. Dissemination of bla(SME-1) via transfer to a mobile DNA element could hinder the use of carbapenems. In this study, bla(SME-1) was determined to impart a fitness cost upon Escherichia coli in multiple genetic contexts and assays. Genetic screens and designed SME-1 mutants were utilized to identify the source of this fitness cost. These experiments established that the SME-1 protein was required for the fitness cost but also that the enzyme activity of SME-1 was not associated with the fitness cost. The genetic screens suggested that the SME-1 signal sequence was involved in the fitness cost. Consistent with these findings, exchange of the SME-1 signal sequence for the TEM-1 signal sequence alleviated the fitness cost while replacing the TEM-1 signal sequence with the SME-1 signal sequence imparted a fitness cost to TEM-1 beta-lactamase. Taken together, these results suggest that fitness costs associated with some beta-lactamases may limit their dissemination. 相似文献
19.
The declining efficacy of chloroquine and pyrimethamine/sulphadoxine in the treatment of human malaria has led to the use of newer antimalarials such as mefloquine and artemisinin. Sequence polymorphisms in the pfmdr1 gene, the gene encoding the plasmodial homologue of mammalian multidrug resistance transporters, have previously been linked to resistance to chloroquine in some, but not all, studies. In this study, we have used a genetic cross between the strains HB3 and 3D7 to study inheritance of sensitivity to the structurally unrelated drugs mefloquine and artemisinin, and to several other antimalarials. We find a complete allelic association between the HB3-like pfmdr1 allele and increased sensitivity to these drugs in the progeny. Different pfmdr1 sequence polymorphisms in other unrelated lines were also associated with increased sensitivity to these drugs. Our results indicate that the pfmdr1 gene is an important determinant of susceptibility to antimalarials, which has major implications for the future development of resistance. 相似文献