首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.  相似文献   

2.
3.
4.
5.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

6.
Glucocorticoid receptor in rat type II pneumocytes has been characterized. The Scatchard plot analysis of 3H-dexamethasone binding to type II cells showed a single class of binding sites. The apparent Kd of 3H-dexamethasone binding by a whole cell assay was 9.1 nM and the maximal binding capacity was 78.0 f mol/10(6) cells (0.31 pmol/mg cytosol protein).  相似文献   

7.
OBJECTIVE: To evaluate the prevalence of reactive type II pneumocytes (RPII) in bronchoalveolar lavage (BAL) fluid samples obtained from patients with various pulmonary disorders. STUDY DESIGN: Consecutive BAL fluid samples were screened for the presence of RPII on May-Grünwald-Giemsa-stained cytocentrifuge preparations. BAL fluid samples with and without RPII were compared with regard to prevalence, associated clinical diagnoses and cytologic findings. RESULTS: RPII were generally large cells with a high nuclear:cytoplasmic ratio and deeply blue-stained, vacuolated cytoplasm. Most RPII occurred in cohesive cell groups, and the vacuoles tended to be confluent. Cytologic findings associated with RPII were foamy alveolar macrophages, activated lymphocytes and plasma cells. RPII were present in 94 (21.7%) of 433 included BAL fluid samples. The highest prevalences were noted in patients with systemic inflammatory response syndrome and alveolar hemorrhage. In addition, RPII tended to occur more frequently in ventilator-associated pneumonia, Pneumocystis carinii pneumonia, extrinsic allergic alveolitis and drug-induced pulmonary disorders. In contrast, RPII were not observed in BAL fluid samples obtained from patients with sarcoidosis. CONCLUSION: RPII were prevalent in about 20% of BAL fluid specimens. They were associated mainly with conditions of acute lung injury and not observed in sarcoidosis.  相似文献   

8.
9.
Based on our previous finding in lung parenchyma of high concentration of the shared epitopes of gp600, a well characterized kidney glycoprotein, we attempted to identify the anatomic site of these epitopes and characterize them biochemically. Affinity-purified polyclonal anti-gp600 antibody was used as the probe. Immunocytochemically in lung on light and electron microscopy the probe reacted exclusively with type II pneumocytes and no other lung cell. The reaction was also demonstrated on freshly isolated and cultured type II pneumocytes. Both approaches showed the reaction to localize on the cell membrane of type II pneumocytes. Immunoprecipitation of radiolabeled type II pneumocyte cell membranes identified two 270- to 290-kDa polypeptides as the reactive proteins. We conclude that the reactive epitopes for anti-gp600 in lung parenchyma are exclusively localized on type II pneumocytes and have a Mr of approximately 270 to 290 kDa and that anti-gp600 may be used as a specific immunologic marker for the type II pneumocytes. Finally, it is possible that the differences in the molecular forms of the cross-reactive proteins in lung and kidney identified in this report are the reason for the known non-nephritogenicity of rat lung for the induction of Heymann nephritis in rat.  相似文献   

10.
The uptake of natural lung surfactant into differentiated type II cells may be used for the targeted delivery of other molecules. The fluorescent anion pyranine [hydroxypyren-1,3,6-trisulfonic acid, sodium salt (HPTS)] was incorporated into a bovine surfactant labeled with [3H]dipalmitoylphosphatidylcholine ([3H]DPPC). The uptake of [3H]DPPC and of HPTS increased with time of incubation and concentration, decreased with the size of the vesicles used, and was stimulated by 8-bromo-cAMP and partially inhibited by hypertonic sucrose. However, the amount of HPTS uptake was approximately 100 times smaller than that of [3H]DPPC. This large difference was due to a more rapid regurgitation of some of the HPTS from the cells but not to leakage from the surfactant before uptake. The acidification of the internalized surfactant increased linearly over 90 min to 7.13, and after 24 h, a pH of 6.83 was measured. In conclusion, after internalization of a double-labeled natural surfactant, the lipid moieties were accumulated in relation to the anions, which were targeted to a compartment not very acidic and in part rapidly expelled from the cells.  相似文献   

11.
We previously reported that arachidonic acid stimulates secretion of phosphatidylcholine in cultures of type II pneumocytes and, based on studies with cyclooxygenase and lipoxygenase inhibitors, suggested that this effect was mediated by lipoxygenase products of arachidonic acid metabolism (Gilfillan, A.M. and Rooney, S.A. (1985) Biochim. Biophys. Acta 833, 336-341). We have now examined the effect of leukotrienes on phosphatidylcholine secretion in type II cells as well as the effect of a leukotriene antagonist, FPL55712, on the stimulatory effect of arachidonic acid. Leukotrienes C4, D4 and E4 stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 10(-12)-10(-6) M. Leukotriene E4 was the most stimulatory, followed by D4 and C4. Leukotriene B4 had no effect. Incubation of the cells with 10(-7) M leukotriene E4 for 90 min resulted in a 107% increase in the rate of phosphatidylcholine secretion. Incubation with 10(-6) M leukotrienes D4 and C4 for the same period resulted in 81% and 63% stimulation, respectively. The leukotrienes had no effect on cellular phosphatidylcholine synthesis or on lactate dehydrogenase release. The stimulatory effects of leukotrienes E4 and D4 were abolished by FPL55712. Similarly, the stimulatory effect of 6 X 10(-6) M arachidonic acid on phosphatidylcholine secretion was reduced from 74% to 25% by 10(-5) M FPL55712. Thus, the stimulatory effect of arachidonic acid on surfactant phospholipid secretion in type II cells is mediated at least in part by leukotrienes.  相似文献   

12.
13.
Fetal type II pneumocytes in organotypic culture can oxidize both palmitate and glucose, with glucose being converted to CO2 at a rate substantially greater than that of palmitate. Glucose can be oxidized by both the pentose shunt pathway and the tricarboxylic acid cycle. Palmitate oxidation to CO2 is increased by carnitine and reduced by glucose and unsaturated fatty acids. These data suggest that glucose may be an important oxidative substrate during late fetal life and that fatty acids may play a relatively minor role in type II cell oxidative metabolism.  相似文献   

14.
The alveolar epithelial basement membrane is believed to play important roles in lung development, in maintaining normal alveolar architecture, and in guiding repair following lung injury. However, little is known about the formation of this structure, or of the mechanisms which mediate interactions between the epithelium and specific matrix macromolecules. Since type IV collagen is a major structural component of basement membranes, we investigated the production of type IV collagen-binding proteins by primary cultures of rat lung type II pneumocytes. Cultures were labeled for up to 24 h with 3H-labeled amino acids or [3H]mannose. Soluble collagen-binding proteins which accumulated in the culture medium were isolated by chromatography on collagen-Sepharose and examined by SDS-polyacrylamide gel electrophoresis. The major type IV collagen-binding protein (CBP1) was identified as fibronectin. We also identified a novel disulfide-bonded collagen-binding glycoprotein (CBP2; Mr = 45,000, reduced). This protein was not recognized by polyclonal antibodies to fibronectin, and showed no detectable binding to denatured type I collagen. The protein was resolved from fibronectin and partially purified by sequential chromatography on gelatin and type IV collagen-Sepharose. We suggest that type II pneumocyte-derived collagen-binding proteins contribute to the formation of the epithelial basement membrane and/or mediate the attachment of these cells to collagenous components of the extracellular matrix.  相似文献   

15.
Surfactant sufficiency is dependent upon adequate synthesis and secretion of surfactant by the type II alveolar epithelium. Our laboratory has previously shown that basal secretion of surfactant phospholipid by differentiated fetal type II cells is lower than the basal secretion by adult cells. The purposes of this study were to determine if undifferentiated fetal type II cells can secrete phosphatidylcholine, to determine if terbutaline, a β-adrenergic agonist, stimulates secretion of surfactant phospholipids by undifferentiated fetal cells and to examine the effects of differentiation on secretion of surfactant phospholipids by fetal cells. Constitutive (basal) secretion of phosphatidylcholine increased linearly as a function of time in both undifferentiated and differentiated cells, but the rate of secretion was greater in differentiated cells than the rate of secretion in undifferentiated cells. Terbutaline caused a concentration-dependent increase in secretion in both undifferentiated and differentiated cells. Maximal effective concentration and EC50 were similar for undifferentiated (10−6 M, 0.2 μM) and differentiated (10−5 M, 0.3 μM) cells. The relative stimulation of secretion above control values was greater for undifferentiated cells. The kinetics of terbutaline stimulation varied significantly with cellular differentiation. Terbutaline resulted in 230% stimulation of secretion in undifferentiated cells at 30 min followed by a decline in the response to terbutaline at 60 to 120 min. In contrast, terbutaline stimulated secretion by differentiated cells showed a sustained linear increase from 0 to 120 min. This regulation of stimulated secretion is not present in undifferentiated cells. We conclude that undifferentiated type II cells are capable of the secretion of phosphatidylcholine and that terbutaline stimulates secretion by undifferentiated cells. Furthermore, basal secretion increases as a function of differentiation of type II cells and the regulation of stimulated secretion seen in differentiated cells is not developed in undifferentiated cells. The developmental regulation of the secretion of surfactant is complex and probably involves both excitatory as well as inhibitory mechanisms which develop at different stages of differentiation of the type II cell.  相似文献   

16.
17.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

18.
19.
20.
Surfactant-associated protein-A (SP-A) is a component of pulmonary surfactant that acts as a cytokine through interaction with a cell-surface receptor (SPAR) on lung epithelial cells. SP-A regulates important physiological processes including surfactant secretion, gene expression, and protection against apoptosis. Tyrosine kinase and PI3K inhibitors block effects of SP-A, suggesting that SPAR may be a receptor tyrosine kinase and activate the PI3K-PKB/Akt pathway. Here we report that SP-A treatment leads to rapid tyrosine-specific phosphorylation of several important proteins in lung epithelial cells including insulin receptor substrate-1 (IRS-1), an upstream activator of PI3K. Analysis of anti-apoptotic signaling species downstream of IRS-1 showed activation of PKB/Akt but not of MAPK. Phosphorylation of IkappaB was minimally affected by SP-A as was NFkappaB gel shift activity. However, FKHR was rapidly phosphorylated in response to SP-A and its DNA-binding activity was significantly reduced. Since FKHR is pro-apoptotic, this may play an important role in signaling the anti-apoptotic effects of SP-A. Therefore, we have characterized survival-enhancing signaling activated by SP-A leading from SPAR through IRS-1, PI3K, PKB/Akt, and FKHR. The activity of this pathway may explain, in part, the resilience of type II cells to lung injury and their survival to repopulate alveolar epithelium after peripheral lung damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号