首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In the presence of acetic anhydride or butyric anhydride, liver aldehyde dehydrogenases catalyse the oxidation of NADH at pH 7.0 and 25 degrees C. The maximum velocities and Michaelis constants for NADH at saturating anhydride concentrations are independent of which anhydride is used, the values being V'max. = 12 min-1 and Km for NADH = 9 micrometer for the mitochondrial enzyme and V'max = 25 min-1 and Km for NADH = 20 micrometer for the cytoplasmic enzyme. Substitution of [4A-2H]NADH for NADH resulted in 2-fold and 4-fold decreases in rate for the mitochondrial and cytoplasmic enzymes respectively.  相似文献   

2.
3.
4.
5.
The rapid and progressive inactivation of alcohol dehydrogenase from horse liver, rat liver and from human retina and of retinol dehydrogenase of rat liver by low concentrations of acetaldehyde or formaldehyde is illustrated. The inactivation of alcohol dehydrogenase can be largely prevented and partially reversed with glutathione. These findings are discussed as a model for better understanding of toxic effects of alcohol and in the context of the importance of protein turnover measurements for clarification of untoward alcohol effects.  相似文献   

6.
This work was undertaken to clarify the role of acetaldehyde dehydrogenases in Saccharomyces cerevisiae metabolism during growth on respiratory substrates. Until now, there has been little agreement concerning the ability of mutants deleted in gene ALD4, encoding mitochondrial acetaldehyde dehydrogenase, to grow on ethanol. Therefore we constructed mutants in two parental strains (YPH499 and W303-1a). Some differences appeared in the growth characteristics of mutants obtained from these two parental strains. For these experiments we used ethanol, pyruvate or lactate as substrates. Mitochondria can oxidize lactate into pyruvate using an ATP synthesis-coupled pathway. The ald4Delta mutant derived from the YPH499 strain failed to grow on ethanol, but growth was possible for the ald4Delta mutant derived from the W303-1a strain. The co-disruption of ALD4 and PDA1 (encoding subunit E1alpha of pyruvate dehydrogenase) prevented the growth on pyruvate for both strains but prevented growth on lactate only in the double mutant derived from the YPH499 strain, indicating that the mutation effects are strain-dependent. To understand these differences, we measured the enzyme content of these different strains. We found the following: (a) the activity of cytosolic acetaldehyde dehydrogenase in YPH499 was relatively low compared to the W303-1a strain; (b) it was possible to restore the growth of the mutant derived from YPH499 either by addition of acetate in the media or by introduction into this mutant of a multicopy plasmid carrying the ALD6 gene encoding cytosolic acetaldehyde dehydrogenase. Therefore, the lack of growth of the mutant derived from the YPH499 strain seemed to be related to the low activity of acetaldehyde oxidation. Therefore, when cultured on ethanol, the cytosolic acetaldehyde dehydrogenase can partially compensate for the lack of mitochondrial acetaldehyde dehydrogenase only when the activity of the cytosolic enzyme is sufficient. However, when cultured on pyruvate and in the absence of pyruvate dehydrogenase, the cytosolic acetaldehyde dehydrogenase cannot compensate for the lack of the mitochondrial enzyme because the mitochondrial form produces intramitochondrial NADH and consequently ATP through oxidative phosphorylation.  相似文献   

7.
Mechanisms of the inhibitory effect of ethanol on acetaminophen hepatotoxicity are controversial. We studied the effects of ethanol and acetaldehyde, an oxidative metabolite of ethanol, on NADPH-dependent acetaminophen-glutathione conjugate production in liver microsomes. Ethanol at concentrations as low as 2mM prevented the conjugate production noncompetitively. Acetaldehyde also inhibited acetaminophen-glutathione conjugate production at concentrations as low as 0.1mM that is comparable with those observed in vivo after social drinking. Acetaldehyde may be involved in ethanol-induced inhibition of acetaminophen hepatotoxicity.  相似文献   

8.
Thermal inactivation of horse liver alcohol dehydrogenase (LADH) exhibits the following biphasic kinetics A = Afast.e-Kfast.t + Aslow.e-Kslow.t Where A is the per cent residual activity at time t,Afast and Aslow are amplitudes (expressed as % of initial activity) and kfast and kslow first-order rate constants of the fast and slow phases, respectively. For apoenzyme, Afast = Aslow = 50% of the initial activity under all conditions of temperature and pH. On the addition of a substrate or coenzyme ligand, there is a ligand concentration-dependent increase in per cent Aslow and a decrease in kslow. At sufficiently high ligand concentration, the entire time-course of inactivation can be described as a single exponential decay. The variations of per cent Aslow and of kslow with ligand concentration are consistent with the existence of two binding sites of different ligand affinities. Inactivation of LADH by excess EDTA also exhibits a similar biphasic kinetics with Afast = Aslow = 50% of the initial activity. Addition of ethanol or NAD+ brings about a concentration-dependent decrease in kfast and kslow without affecting amplitudes of the two phases. The NAD+ concentration-dependence of this decrease is consistent with a single dissociation constant for the coenzyme. Inactivation of yeast alcohol dehydrogenase by heat or excess EDTA can be represented as a single exponential decay of activity under all conditions of temperature and pH in the absence as well as presence of ethanol or NAD+. Implications of these results for the molecular symmetry of the two oligomeric enzymes in solution are discussed.  相似文献   

9.
Due to the controversy over the half-of-the-sites reactivity of horse liver alcohol dehydrogenase during benzyl alcohol oxidation, we have re-investigated the transient kinetics, stoichiometry and rate parameters over a wide range of substrate concentrations (0.05 mm to 40 mm) at pH 7.0 and 8.5 and using newly determined extinction coefficients. Data were elaborated by computer analysis in order to separate the initial rapid step (burst) from the whole time-course of the reaction. It has been found that: (1) the dependence of the burst amplitude upon benzyl alcohol concentration is distinctly biphasic. In the range from 0.05 mm up to approximately 1 mm the burst amplitude is rather insensitive to changes in alcohol concentration and corresponds to 50% of the active sites of the enzyme; for alcohol concentrations greater than 1 mm this amplitude increases and reaches a value of approximately 90% when benzyl alcohol is 40 mm. (2) The steady-state initial rate is also biphasic with respect to alcohol concentration, indicative of substrate inhibition, which begins in the concentration range at which deviation from the half-burst also appears. In other words, burst amplitudes larger than 50% are concomitant with inhibition of the rate of enzyme turnover. (3) In the presence of isobutyramide the burst is larger than 50% for the whole range of concentration of the substrate and extrapolates at infinite substrate concentration to approximately 90% of the enzyme sites. (4) With deuteroethanol as substrate, the burst is larger than 50%, with or without isobutyramide, and extrapolates to approximately 95% of the enzyme sites at infinite substrate concentration. These data explain the discrepancy of results in the literature concerning the transient kinetics of alcohol oxidation. Mechanistic implications of the results (particularly the deviation from the halfof-the-sites behaviour of benzyl alcohol under inhibition conditions) are discussed.  相似文献   

10.
11.
Ethanol or acetaldehyde orally administered (15% and 2% respectively in drinking water) to male Wistar rats for three months induced alterations in the main liver enzymes responsible for ethanol metabolism, aspartate and alanine aminotransferases and NAD glutamate dehydrogenase. Ethanol produced a significant decrease in the activity of soluble alcohol dehydrogenase, while acetaldehyde induced alterations both in soluble and mitochondrial aldehyde dehydrogenases: soluble activity was significantly higher than in the control and ethanol-treated groups, and mitochondrial activity was significantly diminished. Both soluble aspartate and alanine aminotransferases showed pronounced increases by the chronic effect of acetaldehyde, while mitochondrial activities were practically unchanged by the effect of ethanol or acetaldehyde. Mitochondrial NAD glutamate dehydrogenase showed a rise in its activity both by the effect of chronic ethanol and acetaldehyde consumption. The level of metabolites assayed in liver extracts showed marked differences between ethanol and acetaldehyde treatment which indicates that ethanol produced a remarkable increase in glutamate, aspartate and free ammonia together with marked decrease in pyruvate and 2-oxoglutarate concentrations. Acetaldehyde consumption induced a significant decrease in 2-oxoglutarate and pyruvate concentrations. These observations suggest that ethanol has an important effect on the urea cycle enzymes, while the effect of acetaldehyde contributes to the impairment of the citric acid cycle.  相似文献   

12.
The saturated and 2-enoic primary alcohols and aldehydes, ethanol, 1-propanol, 1-butanol, 3-methyl-1-butanol, 1-hexanol, phenylmethanol, 3-phenyl-1-propanol, 2-propen-1-ol, 2-buten-1-ol, 3-methyl-2-buten-1-ol, 2-hexen-1-ol, 3-phenyl-2-propen-1-ol, ethanal, 1-propanal, 1-butanal, 1-hexanal, phenylmethanal, 3-phenyl-1-propanal, 2-propen-1-al, 2-buten-1-al, 2-hexen-1-al, and 3-phenyl-2-propen-1-al, have been compared under uniform conditions as substrates for the alcohol dehydrogenase enzymes from horse and human liver and from yeast. Kinetic constants (Km arid V) have been measured for each of the substrates with each of the enzymes; equilibrium constants for the various alcohol-aldehyde pairs have also been estimated. The results obtained emphasize the similarities of yeast alcohol dehydrogenase to horse and human liver alcohol dehydrogenase, showing the specificity of yeast alcohol dehydrogenase to be less restricted than formerly believed. In general, the 2-enoic alcohols are better substrates for all three alcohol dehydrogenases than their saturated analogs; on the other hand, saturated aldehydes are better substrates than the 2-enoic aldehydes. Based on these various findings, it is suggested that a more likely candidate than ethanol for the physiological substrate of alcohol dehydrogenase in mammalian systems may well be an unsaturated alcohol, although the wide variety of substrates catalyzed at high rates is not incompatible with a general detoxifying function for alcohols or aldehydes, or both, by alcohol dehydrogenase.  相似文献   

13.
The kinetics of the enzymatic step of the peroxidatic reaction between NAD and hydrogen peroxide, catalysed by horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1), has been investigated at pH 7 at high enzyme concentration. Under such conditions no burst phase has been observed, thus indicating that the rate-limiting step in the process, which converts NAD into Compound I, either precedes or coincides with the chemical step responsible for the observed spectroscopic change. Kinetic analysis of the data, performed according to a simplified reaction scheme suggests that the rate-limiting step is coincident with the spectroscopic (i.e., chemical) step itself. Furthermore, the absence of a proton burst phase indicates the proton release step does not precede the chemical step, in contrast with the case of ethanol oxidation. A kinetic effect of different premixing conditions on the reaction rate has been observed and attributed to the presence of NADH formed in the 'blank reaction' between NAD and residual ethanol tightly bound to alcohol dehydrogenase. A molecular mechanism for the enzymatic peroxidation step is finally proposed, exploiting the knowledge of the much better known reaction of ethanol oxidation. Inhibition of this reaction by NADH has been investigated with respect to H2O2 (noncompetitive, Ki about 10 microM) and to NAD (competitive, Ki about 0.7 microM). The effect of temperature on the steady-state reaction state (about 65 kJ/mol activation energy) has also been studied.  相似文献   

14.
Inhibition and stimulation of yeast growth by acetaldehyde   总被引:5,自引:0,他引:5  
Summary Acetaldehyde at above about 0.3 g/l inhibited yeast growth, suggesting that it may contribute to product inhibition in alcohol fermentations when present at high concentrations intracellularly. The toxic effects of acetaldehyde and ethanol were not mutually reinforcing, acetaldehyde appearing to alleviate slightly the effects of ethanol. In support of this, low concentrations of acetaldehyde greatly reduced the lag phase in ethanol-containing medium and increased the specific growth rate.  相似文献   

15.
16.
Formamides are unreactive analogues of the aldehyde substrates of alcohol dehydrogenases and are useful for structure-function studies and for specific inhibition of alcohol metabolism. They bind to the enzyme-NADH complex and are uncompetitive inhibitors against varied concentrations of alcohol. Fourteen new branched chain and chiral formamides were prepared and tested as inhibitors of purified Class I liver alcohol dehydrogenases: horse (EqADH E), human (HsADH1C*2), and mouse (MmADH1). In general, larger, substituted formamides, such as N-1-ethylheptylformamide, are better inhibitors of HsADH1C*2 and MmADH1 than of EqADH, reflecting a few differences in amino acid residues that change the sizes of the active sites. In contrast, the linear, alkyl (n-propyl and n-butyl) formamides are better inhibitors of EqADH and MmADH1 than of HsADH1C*2, probably because water disrupts van der Waals interactions. These enzymes are also inhibited strongly by sulfoxides and 4-substituted pyrazoles. The structure of EqADH complexed with NADH and (R)-N-1-methylhexylformamide was determined by x-ray crystallography at 1.6 A resolution. The structure resembles the expected Michaelis complex with NADH and aldehyde, and shows for the first time that the reduced nicotinamide ring of NADH is puckered, as predicted for the transition state for hydride transfer. Metabolism of ethanol in mice was inhibited by several formamides. The data were fitted with kinetic simulation to a mechanism that describes the non-linear progress curves and yields estimates of the in vivo inhibition constants and the rate constants for elimination of inhibitors. Some small formamides, such as N-isopropylformamide, may be useful inhibitors in vivo.  相似文献   

17.
2-Mercaptoethanol is a strong inhibitor of LADH. The inhibitory effect is likely due to the binding of the SH group to the enzymatic zinc ion. Various thiol compounds do not inhibit YADH and it is suggested that the zinc atoms involved in the catalytic mechanism of LADH and YADH may have different structural arrangements and that these zinc atoms in YADH may not be blocked by thiol compounds. Thiol compounds also quench the enhanced fluorescence of LADH-NADH in a pH-dependent manner. At pH 9.2, the binding of coenzyme to LADH is replaced by 2-mercaptoethanol, whilst at pH 7.3, it further quenches the fluorescence of NADH-LADH. This quenching of fluorescence is likely attributed to a conformational change and energy transfer upon binding of 2-mercaptoethanol to the LADH-NADH complex. Complete reversal of the inhibitory effect of thiol compounds on LADH can be obtained by dialysis.  相似文献   

18.
The nature of reactions catalysed by yeast phosphatidylinositol synthase expressed in E. coli has been investigated. The single enzyme is shown to carry both CDP-diacylglycerol-dependent incorporation of inositol into phosphatidylinositol (Km for inositol of 0.090 mM) and a CDP-diacylglycerol-independent exchange reaction between phosphatidylinositol and inositol (Km for inositol of 0.066 mM). The exchange reaction and reversal of phosphatidylinositol synthase were both stimulated by CMP, but had different optimum pH and requirements for substrates. These results suggest that CMP-stimulated exchange and CMP-dependent reverse reactions are distinct processes catalysed by the same enzyme. phosphatidylinositol synthase.  相似文献   

19.
Stopped-flow studies of oxidation of butan-1-ol and propan-2-ol by NAD(+) in the presence of Phenol Red and large concentrations of yeast alcohol dehydrogenase give no evidence for the participation of a group of pK(a) approx. 7.6 in alcohol binding. Such a group has been implicated in ethanol binding to horse liver alcohol dehydrogenase [Shore, Gutfreund, Brooks, Santiago & Santiago (1974) Biochemistry13, 4185-4190]. The present result supports previous findings based on steady-state kinetic studies with the yeast enzyme. Stopped-flow studies of the yeast alcohol dehydrogenase-catalysed reduction of acetaldehyde by NADH in the presence of ethanol as product inhibitor indicate that the rate-limiting step is NAD(+) release from the enzyme-NAD(+)-ethanol product complex. This finding permits calculation of K(3), the dissociation constant for ethanol from the enzyme-NAD(+)-ethanol complex, by using the product-inhibition data of Dickenson & Dickinson (1978) (Biochem. J.171, 613-627). The calculations show that K(3) varies very little with pH in the range 5.95-8.9, and this agrees with the findings of the stopped-flow experiments described above. Absorption and fluorescence measurements on mixtures of substrates and coenzymes in the presence of high concentrations of alcohol dehydrogenase have been used to estimate values for the ratio [enzyme-NADH-acetaldehyde]/ [enzyme-NAD(+)-ethanol] at equilibrium. The values obtained were in the range 0.11+/-0.04, and this value together with estimates of K(3) was used to provide estimates of values for rate constants and dissociation constants for steps within the catalytic mechanism.  相似文献   

20.
The rate effects of imidazole on the EE isoenzyme of horse liver alcohol dehydrogenase have been analysed in terms of the elucidated kinetic mechanism of the enzyme. These imidazole effects on both directions of the reaction within nonexcess as well as excess ranges of substrate concentrations pointed to the competition between imidazole and ethanol for binding to the same three enzyme species in the kinetic mechanism, namely the free enzyme, the enzyme-NAD+ complex, and the enzyme-NADH complex. Moreover, both imidazole and ethanol brought about an enhancement in the rate of dissociation of NAD+ from its binding site on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号