首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greenhouse and field trial experiments were performed to evaluate the use of Chromolaena odorata with various soil amendments for phytoextraction of Pb contaminated soil Pb mine soils contain low amount of nutrients, so the additions of organic (cow manure) and inorganic (Osmocote and NH4NO3 and KCl) fertilizers with EDTA were used to enhance plant growth and Pb accumulation. Greenhouse study showed that cow manure decreased available Pb concentrations and resulted in the highest Pb concentration in roots (4660 mg kg(-1)) and shoots (389.2 mg kg(-1)). EDTA increased Pb accumulation in shoots (17-fold) and roots (11-fold) in plants grown in soil with Osmocote with Pb uptake up to 203.5 mg plant(-1). Application of all fertilizers had no significant effects on relative growth rates of C. odorata. Field trial study showed that C. odorata grown in soil with 99545 mg kg(-1) total Pb accumulated up to 3730.2 and 6698.2 mg kg(-1) in shoots and roots, respectively, with the highest phytoextraction coefficient (1.25) and translocation factor (1.18). These results indicated that C. odorata could be used for phytoextraction of Pb contaminated soil. In addition, more effective Pb accumulation could be enhanced by Osmocote fertilizer. However, the use of EDTA in the field should be concerned with their leaching problems.  相似文献   

2.
Large parts of the central highlands of Mexico are heavily eroded and the success of a planned reforestation program will greatly improve when the organic matter and nutrient content of the soil increases prior to the planting of the trees. This study investigated how the application of biosolids from a pharmaceutical company producing cephalosporines or third generation antibiotics could be used as a soil amendment and affect dynamics of C, P and N in soil. A sandy clay loam soil was sampled, amended with 24 g of dry biosolids kg(-1) dry soil or approximately 32 x 10(3) kg ha(-1) for the 0-10 cm layer, and incubated aerobically while production of carbon dioxide (CO(2)), dynamics of ammonium (NH(4)(+)),nitrite (NO(2)(-)), nitrate (NO(3)(-)), sodium bicarbonate (NaHCO(3)) extractable phosphorus (PO(4)(3-)), and microbial biomass carbon (C) were monitored. Results showed that the biosolid with pH 12, organic C content 162 g kg(-1), total N 21 g kg(-1), was of excellent quality considering its heavy metal content (USEPA) and a class "B" (USEPA) biosolid considering the amount of pathogens. No cephalosporines could be detected in the biosolid. Addition of biosolid to soil increased production of CO(2) 1.4 times and added >60 mg NH(4)(+) kg(-1). The application of biosolids did not significantly increase the concentration of NO(2)(-) which remained <2 mg N kg(-1) soil, but the concentration of NO(3)(-) did increase with 175 mg N kg(-1) soil. The microbial biomass C did not change when sewage biosolids was added and concentrations of extractable PO(4)(3-) only increased temporarily. Washing the biosolids reduced concentrations of NH(4)(+) and NO(3)(-), but also reduced pathogens and concentrations of chloride (Cl(-)), which might pose a treat to humans and the environment, respectively. Although the biosolid added valuable nutrients to the soil and did not inhibit C and N mineralization, further investigation into possible long-term environmental effects on soil processes and plant growth is necessary before this biosolid can be used in the field.  相似文献   

3.
We analyzed the impact of surfactant addition on hydrocarbon mineralization kinetics and the associated population shifts of hydrocarbon-degrading microorganisms in soil. A mixture of radiolabeled hexadecane and phenanthrene was added to batch soil vessels. Witconol SN70 (a nonionic, alcohol ethoxylate) was added in concentrations that bracketed the critical micelle concentration (CMC) in soil (CMC') (determined to be 13 mg g(-1)). Addition of the surfactant at a concentration below the CMC' (2 mg g(-1)) did not affect the mineralization rates of either hydrocarbon. However, when surfactant was added at a concentration approaching the CMC' (10 mg g(-1)), hexadecane mineralization was delayed and phenanthrene mineralization was completely inhibited. Addition of surfactant at concentrations above the CMC' (40 mg g(-1)) completely inhibited mineralization of both phenanthrene and hexadecane. Denaturing gradient gel electrophoresis of 16S rRNA gene segments showed that hydrocarbon amendment stimulated Rhodococcus and Nocardia populations that were displaced by Pseudomonas and Alcaligenes populations at elevated surfactant levels. Parallel cultivation studies revealed that the Rhodococcus population can utilize hexadecane and that the Pseudomonas and Alcaligenes populations can utilize both Witconol SN70 and hexadecane for growth. The results suggest that surfactant applications necessary to achieve the CMC alter the microbial populations responsible for hydrocarbon mineralization.  相似文献   

4.
不同土地利用类型对丹江口库区土壤氮矿化的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
氮(N)素是陆地生态系统净初级生产力的重要限制因子, 土地利用类型的变化对生态系统氮循环过程有着重要的影响。采用PVC顶盖埋管原位培养的方法, 对丹江口库区清塘河流域相邻的侧柏(Platycladus orientalis)人工林、人工种植灌木林地和农田3种土地利用类型的氮素矿化和硝化作用进行了研究。结果表明, 侧柏人工林、灌木林地和农田的NH4+-N浓度(mg·kg-1)依次为1.33 ± 0.20、1.67 ± 0.17和1.62 ± 0.13, 不同土地利用类型间的NH4+-N浓度无显著性差异; 而3种土地利用类型下土壤NO3--N浓度(mg·kg-1)差异显著, 农田NO3--N浓度(9.00 ± 0.73)显著高于侧柏人工林(1.27 ± 0.18)和灌木林地(3.51 ± 0.11)。NO3--N在灌木林地和农田中分别占土壤无机氮库的67.8%和84.8%, 是土壤无机氮库的主要存在形式; 而侧柏人工林中NO3--N和NH4+-N浓度则基本相等。土壤硝化速率(mg·kg-1·30 d-1)从农田(7.13 ± 2.19)、灌木林地(2.56 ± 1.07)到侧柏人工林(0.85 ± 0.10)显著性降低。侧柏人工林、灌木林地和农田的矿化速率(mg·kg-1·30 d-1)依次为0.98 ± 0.12、2.52 ± 1.25和6.58 ± 2.29。矿化速率和硝化速率显著正相关, 但是矿化速率在不同的土地利用类型间差异不显著。培养过程中灌木林地和农田NH4+-N的消耗大于积累, 氨化速率为负值, 导致灌木林地和农田矿化速率小于硝化速率。氮素的矿化和硝化作用受土壤含水量和土壤温度的影响, 并对土壤含水量更为敏感。土壤C:N与土壤矿化和硝化速率显著负相关。研究结果表明: 土地利用类型的变化会改变土壤微环境和土壤C:N, 进而会影响到土壤氮循环过程。  相似文献   

5.
Laboratory and field evaluation of broiler litter nitrogen mineralization   总被引:1,自引:0,他引:1  
Two studies were conducted for this research. First, a laboratory incubation to quantify broiler litter N mineralization with the following treatments: two soil moisture regimes, constant at 60% water fill pore space (WFPS) and fluctuating (60-30% WFPS), three soil types, Brooksville silty clay loam, Ruston sandy loam from Mississippi, and Catlin silt loam from Illinois. Second, a field incubation study to quantify broiler litter N mineralization using similar soils and litter application rates as the laboratory incubation. Broiler litter was applied at an equivalent rate of 350 kg total N ha(-1) for both studies except for control treatments. Subsamples were taken at different timing for both experiments for NO3-N and NH4-N determinations. In the laboratory experiment, soil moisture regimes had no significant impact on litter-derived inorganic N. Total litter-derived inorganic N across all treatments increased from 23 mg kg(-1) at time 0, to 159 mg kg(-1) at 93 d after litter application. Significant differences were observed among the soil types. Net litter-derived inorganic N was greater for Brooksville followed by Ruston and Catlin soils. For both studies and all soils, NH4-N content decreased while NO3-N content increased indicating a rapid nitrification of the mineralized litter N. Litter mineralization in the field study followed the same trend as the laboratory study but resulted in much lower net inorganic N, presumably due to environmental conditions such as precipitation and temperature, which may have resulted in more denitrification and immobilization of mineralized litter N. Litter-derived inorganic N from the field study was greater for Ruston than Brooksville. Due to no impact by soil moisture regimes, additional studies are warranted in order to develop predictive relationships to quantify broiler litter N availability.  相似文献   

6.
The effects of applications of food waste and paper waste vermicomposts on some soil chemical and biological properties were evaluated in field plots planted with strawberries. Six-week old strawberries (Fragaria ananasa, var. Chandler) were transplanted into 4.5 m(2) raised beds under a plastic tunnel structure measuring 9.14 x 14.6 x 3.6 m. Vermicompost were applied at rates of 5 or 10 t ha(-1) supplemented with inorganic fertilizers to balance fertilizer recommendations for strawberries of 85-155-125 kg NPK ha(-1). Effects of vermicomposts on strawberry growth and yields have been reported previously [Arancon, N.Q., Edwards C.A., Bierman P., Welch, C., Metzger, J.D., 2004. The influence of vermicompost applications to strawberries: Part 1. Effects on growth and yield. Bioresource Technology 93:145-153]. Total extractable N, NH(4)-N, NO(3)-N and orthophosphates did not differ significantly between treatments, except on the last sampling date (harvest date) in which significantly greater amounts of NH(4)-N, NO(3)-N and orthophosphates (P 相似文献   

7.
水稻土模拟土柱中肥料氮素的迁移转化特征   总被引:3,自引:1,他引:3  
张朝  车玉萍  李忠佩 《应用生态学报》2011,22(12):3236-3242
为了明确肥料氮素在模拟土柱中的迁移转化特征,通过布置室内模拟土柱试验,研究了3倍常规施肥水平下(360 mg·kg-1)水稻土中矿质氮的变化.结果表明: 不同处理、不同土层间NH4+-N和NO3--N含量差异显著.不施肥对照在整个培养期间养分含量变化不大,不同土层间亦没有显著性差异.施用尿素和硫铵后,土壤NH4+-N和NO3--N含量显著提高,尤其是0~50 mm土层内,分别达到186.0~2882.1 mg·kg-1和268.7~351.5 mg·kg-1,分别相当于对照的4.8~242倍和5.7~316倍,50 mm以下各土层与对照处理相似,表明肥料氮素的迁移转化主要发生在0~50 mm土层内,并且在培养的前14 d变化最大.整个培养期间不同土层内,硫铵处理不同矿质态氮含量是尿素处理的0.7~2.0倍,硝化率是尿素处理的0.9~1.4倍,表明硫铵在水稻土中的转化效率略高于尿素.  相似文献   

8.
The redox control bioreactor (RCB) is a new hollow fiber membrane bioreactor (HFMBR) design in which oxygen and hydrogen gases are provided simultaneously through separate arrays of juxtaposed hollow fiber (HF) membranes. This study applied the RCB for completely autotrophic conversion of ammonia to N(2) through nitrification with O(2) and denitrification using hydrogen as an electron donor (i.e., autohydrogentrophic denitrification). The hypothesis of this research was that efficient biofilm utilization of O(2) and H(2) at respective HFs would limit transport of these gases to bulk fluid, thereby enabling completely autotrophic ammonia conversion to N(2) through the co-occurrence of ammonia oxidation (O(2)-HF biofilms) and autohydrogenotrophic denitrification (H(2)-HF biofilms). A prototype RCB was fabricated and operated for 215 days on a synthetic, organic-free feedstream containing 217 mg L(-1) NH(4)(+)-N. When O(2) and H(2) were simultaneously supplied, the RCB achieved a steady NH(4)(+)-N removal flux of 5.8 g m(-2) day(-1) normalized to O(2)-HF surface area with a concomitant removal flux of 4.4 g m(-2) day(-1) (NO(3)(-))+NO(2)(-))-N based on H(2)-HF surface area. The significance of H(2) supply was confirmed by an increase in effluent NO(3)(-)-N when H(2) supply was discontinued and a decline in NO(3)(-)-N when H(2) supply was restarted. Increases in H(2) pressure caused decreased ammonia utilization, suggesting that excess H(2) interfered with nitrification. Microprobe profiling across radial transects revealed significant gradients in dissolved O(2) on spatial scales of 1 mm or less. Physiological and molecular analysis of biofilms confirmed that structurally and functionally distinct biofilms developed on adjacent, juxtaposed fibers.  相似文献   

9.
用顶盖埋管法(Close-Top Tube Incubations)就西双版纳3种热带森林(热带季节雨林、片断热带雨林、橡胶林)研究了土壤铵态氮(NH4-N)和硝态氮(NO3-N)以及土壤氮素矿化速率的季节动态情况。结果表明:西双版纳3种不同林型土壤NH4-N、NO3-N和氮素矿化速率均具有明显的季节性变化。NH4-N以干热季(4月末)最高(平均为26.92 mg*kg-1)和干季(2月末)最低(平均为12.01 mg*kg-1);NO3-N则以雨季中期(7月中旬)最高(平均为8.9 mg*kg-1)和干季(2月末)最低(平均为4.04 mg*kg-1);矿化速率则以干热季((2月末~4月末)最高(平均为0.496 mg*kg-1*d-1),以雨季(7月中旬~11月初)最低(平均为0.0037 mg*kg-1*d-1)。就不同林型而言,季节雨林年均氮矿化速率(0.319 mg*kg-1*d-1)>片断热带雨林(0.25 mg*kg-1*d-1)>橡胶林(0.074 mg*kg-1*d-1)。  相似文献   

10.
Geng ZC  Jiang L  Li SS  She D  Hou L 《应用生态学报》2011,22(3):665-672
This paper studied the distribution patterns of organic carbon (OC), total nitrogen (TN), NH4+ -N, and NO3- -N in the profiles of brown calcic soil, grey cinnamon soil, chestnut soil, and alpine meadow soil in the middle of Qilian Mountains. In all test soils, the contents of OC, TN, NH4+ -N, and NO3- -N decreased with increasing soil depth, and the accumulation and decomposition of OC and various N forms differed with soil types. The average content of OC in different soil profiles changed from 14.01 to 41.17 g x kg(-1), and was in the order of grey cinnamon soil > alpine meadow soil > chestnut soil > brown calcic soil; the average content of TN changed from 1.28 to 2.73 g x kg(-1), with a sequence of alpine meadow soil > grey cinnamon soil > chestnut soil > brown calcic soil. The C/N ratio was from 11.33 to 19.22, with the order of grey cinnamon soil > chestnut soil > alpine meadow soil > brown calcic soil. NH4+ -N content changed from 5.80 to 8.40 mg x kg(-1), and was in the order of brown calcic soil > alpine meadow soil > chestnut soil > grey cinnamon soil; NO3- -N content changed from 6.57 to 15.11 mg x kg(-1), being in the order of chestnut soil > alpine meadow soil > brown calcic soil > grey cinnamon soil. The ratio of NO3- -N to NH4+ -N was 1.00-2.69, with the sequence of grey cinnamon soil > chestnut soil > alpine meadow soil > brown calcic soil. The OC and N contents in the same soil types differed significantly with the conditions of climate, vegetation, and topography (e. g. , slope aspect and slope position). Correlation analysis showed that there were highly significant nositive correlations between OC, TN, and NH4+ -N, but these three items had no significant positive correlations with NO3- -N. Furthermore, there were highly significant positive correlations between available K, NH4+ -N, and NO3- -N and between available P and OC, significant positive correlations between available P, TN, and NH4+ -N, but no significant correlations between pH, total K, and total P and OC and N.  相似文献   

11.
Nitrogen and oxygen transformations were studied in a bioturbated (reworked by animals) estuarine sediment (Norsminde Fjord, Denmark) by using a combination of N isotope (NO(3)), specific inhibitor (C(2)H(2)), and microsensor (N(2)O and O(2)) techniques in a continuous-flow core system. The estuarine water was NO(3) rich (125 to 600 muM), and NO(3) was consistently taken up by the sediment on the four occasions studied. Total NO(3) uptake (3.6 to 34.0 mmol of N m day) corresponded closely to N(2) production (denitrification) during the experimental steady state, which indicated that dissimilatory, as well as assimilatory, NO(3) reduction to NH(4) was insignificant. When C(2)H(2) was applied in the flow system, denitrification measured as N(2)O production was often less (58 to 100%) than the NO(3) uptake because of incomplete inhibition of N(2)O reduction. The NO(3) formed by nitrification and not immediately denitrified but released to the overlying water, uncoupled nitrification, was calculated both from NO(3) dilution and from changes in NO(3) uptake before and after C(2)H(2) addition. These two approaches gave similar results, with rates ranging between 0 and 8.1 mmol of N m day on the four occasions. Attempts to measure total nitrification activity by the difference between NH(4) fluxes before and after C(2)H(2) addition failed because of non-steady-state NH(4) fluxes. The vertical distribution of denitrification and oxygen consumption was studied by use of N(2)O and O(2) microelectrodes. The N(2)O profiles measured during the experimental steady state were often irregularly shaped, and the buildup of N(2)O after C(2)H(2) was added was much too fast to be described by a simple diffusion model. Only bioturbation by a dense population of infauna could explain these observations. This was corroborated by the relationship between diffusive and total fluxes, which showed that only 19 to 36 and 29 to 62% of the total O(2) uptake and denitrification, respectively, were due to diffusion-reaction processes at the regular sediment surface, excluding animal burrows.  相似文献   

12.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

13.
NH3 removal by a full-scale biofilter with rockwool packing materials was studied by measuring the gases and potential nitrification and denitrification activities of those materials in order to improve the biofiltration technology used in livestock farms. The rockwool biofilter was a durable and effective system for removing NH3, which was varied with the turning of manure composts. Furthermore, NH3 could be treated in the absence of an extra increase in two greenhouse gases, N2O and CH4. Potential nitrification and denitrification activities of the packing materials were estimated to be 8.2-12.2 mg N, and 1.42-4.69 mg N/100 g dry samples per day, respectively. The results suggested that potential nitrification and denitrification activities would increase within the biofilter where substrates, NH3 or NO3(-), have accumulated as a result of its operation. However, since percolate water contained high concentrations of NH4(+) and NO3(-), further improvement is required by reducing nitrogenous compounds within both the biofilter and percolate water.  相似文献   

14.
Ambus  Per  Jensen  Erik Steen 《Plant and Soil》1997,197(2):261-270
Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment 1: 15N-labelled ground (3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic15 N and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days for measuring gross N mineralization and denitrification.Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg-1 soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg-1 soil) than from cut barley (2.7 mg N kg-1 soil). Microbial biomass peaked at day 4 with the barley treatments and at day 14 with the cellulose+glucose whereafter the biomass leveled out at values 79 mg C kg-1 (ground), 104 (cut), and 242 (cellulose+glucose) higher than for the control soil. Microbial growth yields were similar for the two barley treatments, ca. 60 mg C g-1 substrate C added, which was lower than the 142 mg C g-1 C added with cellulose+glucose. This suggests that the 75% (w/w) holocelluloses and sugars contained with the barley material remained physically protected despite grinding. In Experiment 2 gross mineralization on day 3 was 4.8 mg N kg-1 d-1 with ground pea, twice as much as for all other treatments. On day 26 the treatment with ground barley had the greatest gross N mineralization. In static cores ground barley denitrified 11-fold more than did cut barley, whereas denitrification was similar for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue.We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long term, grinding the plant residues has no significant effect on N dynamics.  相似文献   

15.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

16.
We investigated the effects of changes in soil C and N availability on N mineralization, nitrification, denitrification, NH(3) volatilization, and soil respiration in the Mojave Desert. Results indicate a C limitation to microbial N cycling. Soils from underneath the canopies of Larrea tridentata (DC.) Cov., Pleuraphis rigida Thurber, and Lycium spp. exhibited higher rates of CO(2 ) flux, lower rates of NH(3) volatilization, and a decrease in inorganic N (NH(4)(+)-N and NO(3)(-)-N) with C addition. In addition to C limitation, soils from plant interspaces also exhibited a N limitation. Soils from all locations had net immobilization of N over the course of a 15-day laboratory incubation. However, soils from interspaces had lower rates of net nitrification and potential denitrification compared to soils from under plant canopies. The response to changes in C availability appears to be a short-term increase in microbial immobilization of inorganic N. Under controlled conditions, and over a longer time period, the effects of C and N availability appear to give way to larger differences due to spatial location. These findings have implications for ecosystems undergoing changes in soil C and N availability due to such processes as desertification, exotic species invasions, or elevated atmospheric CO(2) concentration.  相似文献   

17.
Yanai  Junta  Robinson  David  Young  Iain M.  Kyuma  Kazutake  Kosaki  Takashi 《Plant and Soil》1998,202(2):263-270
Adding nitrogen (N) fertilizers to soil affects not only the concentration in the soil solution of the added ions, but also those of other ions already present in the soil. This secondary effect is caused by ion exchange and electrochemical equilibrium processes. We studied how different N fertilizers affected the chemical composition of the soil solution over time, and how this related to nutrient uptake by wheat. Soil was fertilized either with (NH4)2SO4 or Ca(NO3)2, or no N was added. Each of these N treatments was either planted or not with spring wheat (Triticum aestivum L.). Soil solutions were collected repeatedly with looped hollow fiber samplers from the root zone in situ, six times during a 50-day pot experiment. Plants were harvested five times, and their nutrient contents determined. In the soil solution, NO3- was significantly less concentrated if (NH4)2SO4, rather than Ca(NO3)2 was applied, until after net nitrification had ended on day 20. In contrast, Ca2+, Mg2+ and K+ were significantly more concentrated in the former treatment. This was probably caused by the greater concentration of anions that resulted from nitrification. P was always very dilute and unaffected by the form of N fertilizer. The form of N fertilizer had no significant effect on plant growth and nutrient uptake. The likely contribution of mass flow of the soil solution in supplying Ca, Mg and N to the plants was greatest when (NH4)2SO4 was supplied. The supply of K and P was unaffected by N fertilizer. The potential for N leaching loss was lower with (NH4)2SO4 than with Ca(NO3)2, especially up to day 20. However, the potential for cations leaching loss was greater in the (NH4)2SO4 treatment. This suggests that there is only a limited advantage in fertilizing with (NH4)2SO4 to reduce the total loss of nutrients from soil.  相似文献   

18.
Denitrification losses from a poorly drained clayey loamy soil under natural pasture were measured over a two-year period using the acetylene inhibition technique. Plots received two different applications of fertilizer as calcium ammonium nitrate or cow slurry (a total of 145–290 kg N ha–1 in 1991 and 120–240 kg in 1992). In the first year, N losses in the mineral treatments were about 4 times greater than losses in the slurry treatments. In the second year losses in the slurry treatments increased in such a way that losses in the higher slurry application became similar to those for the two mineral treatments. Soil nitrate was the factor producing differences between treatments. In this way, N mineralization in periods between fertilizations coinciding with high soil water contents was responsible in the second year for the increase in N losses in the slurry treatments. Denitrification rates greater than 0.1 kg N ha–1 day–1 occurred at soil water contents > 33 % (air filled porosity < 26 %) and soil nitrate contents > 1 mg N kg–1 dry soil. Spring and autumn were the seasons of highest risk of denitrification because of N fertilizations coinciding with periods of soil saturation with water. Winter losses were low, but this is a period when there is a risk of denitrification in wetter seasons, particularly for a slurry application management.  相似文献   

19.
The kinetics of inhibition of CH(inf4) oxidation by NH(inf4)(sup+), NO(inf2)(sup-), and NO(inf3)(sup-) in a humisol was investigated. Soil slurries exhibited nearly standard Michaelis-Menten kinetics, with half-saturation constant [K(infm(app))] values for CH(inf4) of 50 to 200 parts per million of volume (ppmv) and V(infmax) values of 1.1 to 2.5 nmol of CH(inf4) g of dry soil(sup-1) h(sup-1). With one soil sample, NH(inf4)(sup+) acted as a simple competitive inhibitor, with an estimated K(infi) of 8 (mu)M NH(inf4)(sup+) (18 nM NH(inf3)). With another soil sample, the response to NH(inf4)(sup+) addition was more complex and the inhibitory effect of NH(inf4)(sup+) was greater than predicted by a simple competitive model at low CH(inf4) concentrations (<50 ppmv). This was probably due to NO(inf2)(sup-) produced through NH(inf4)(sup+) oxidation. Added NO(inf2)(sup-) was inherently more inhibitory of CH(inf4) oxidation at low CH(inf4) concentrations, and more NO(inf2)(sup-) was produced as the CH(inf4)-to-NH(inf4)(sup+) ratio decreased and the competitive balance shifted. NaNO(inf3) was a noncompetitive inhibitor of CH(inf4) oxidation, but inhibition was evident only at >10 mM concentrations, which also altered soil pHs. Similar concentrations of NaCl were also inhibitory of CH(inf4) oxidation, so there may be no special inhibitory mechanism of nitrate per se.  相似文献   

20.
BACKGROUND AND AIMS: It has recently found that lowland rice grown hydroponically is exceptionally efficient in absorbing NO3-, raising the possibility that rice and other wetland plants growing in flooded soil may absorb significant amounts of NO3- formed by nitrification of NH4+ in the rhizosphere. This is important because (a) this NO3- is otherwise lost through denitrification in the soil bulk; and (b) plant growth and yield are generally improved when plants absorb their nitrogen as a mixture of NO3- and NH4+ compared with growth on either N source on its own. A mathematical model is developed here with which to assess the extent of NO3- absorption from the rhizosphere by wetland plants growing in flooded soil, considering the important plant and soil processes operating. METHODS: The model considers rates of O2 transport away from an individual root and simultaneous O2 consumption in microbial and non-microbial processes; transport of NH4+ towards the root and its consumption in nitrification and uptake at the root surface; and transport of NO3- formed from NH4+ towards the root and its consumption in denitrification and uptake by the root. The sensitivity of the model's predictions to its input parameters is tested over the range of conditions in which wetland plants grow. KEY RESULTS: The model calculations show that substantial quantities of NO3- can be produced in the rhizosphere of wetland plants through nitrification and taken up by the roots under field conditions. The rates of NO3- uptake can be comparable with those of NH4+. The model also shows that rates of denitrification and subsequent loss of N from the soil remain small even where NO3- production and uptake are considerable. CONCLUSIONS: Nitrate uptake by wetland plants may be far more important than thought hitherto. This has implications for managing wetland soils and water, as discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号