首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts of Ureaplasma urealyticum strains Pi and T960 (CX8) (serovars 6 and 8, respectively) metabolized inorganic pyrophosphate (PPi). The inorganic pyrophosphatase (PPase) activity was greatest with Mg2+ as cofactor, but Mn2+ acted as a poor substitute. The PPases of the two serovars differed electrophoretically. Although the highest PPase activity was obtained using PPi as substrate, the enzyme could also utilize to a lesser degree both tripolyphosphate and trimetaphosphate. No activity was observed against beta-glycerophosphate, naphthyl phosphates, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, thiamin pyrophosphate, phosphoribosylpyrophosphate, ADP or ATP. Acid- and alkaline-phosphatase activities were observed with naphthyl phosphates as substrates, but they did not have the same electrophoretic mobility on gels as the PPase activity. U. urealyticum PPase was inhibited by oxidized glutathione, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, phenylglyoxal, p-chloromercuribenzoic acid, Mn2+, Zn2+ and Ca2+. Neither reduced glutathione, L-cysteine nor Co2+ enhanced activity. PPi can act as a substrate or regulator of certain metabolic reactions, and PPi metabolism can function in bacterial bioenergetics; its role in ureaplasmas is presently unclear.  相似文献   

2.
3.
Phospholipase C (PL-C) mediates transduction of neurotransmitter signals across membranes via hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2), leading to generation of second messengers inositol-1,4,5-trisphosphate and diacylglycerol. In this study, dopamine-1 (DA-1) but not dopamine-2 (DA-2) agonists were shown to stimulate PL-C activity in renal cortical membranes. The DA-1 agonist, SKF 82526, stimulated the release of inositol phosphates from renal cortical membranes prelabeled with [3H]myoinositol. The majority of the label (75%) was found in phosphatidylinositol followed by PIP2 (15%) and phosphatidylinositol-4-phosphate (10%). A DA-1 specific effect on PL-C activity was also observed in an in vitro assay of PL-C activity in renal cortical membranes and basolateral and brush border membranes using [3H]PIP2 as the substrate. Dopamine and SKF 82526 stimulated the release of inositol phosphates from added [3H]PIP2 in a concentration-dependent manner. This release was blocked by the DA-1 antagonist SCH 23390 but not by the alpha-adrenergic antagonists phentolamine and prazosin. In contrast, the DA-2 agonist LY 171555 had no effect on inositol phosphate release. Guanosine 5'-(3-O-thio)triphosphate enhanced while guanyl-5'-yl thiophosphate attenuated the DA-1 agonist-stimulated PL-C activity. PL-C activity as measured by [3H]PIP2 hydrolysis had a pH optimum of 6.5, was inhibited by Mg2+ concentrations above 1 mM, was linear with time and protein concentration, and was sensitive to phosphatidylserine and calcium concentrations. We conclude that PL-C is activated by DA-1 but not DA-2 agonists in renal cortical membranes as well as both the basolateral and brush border renal tubular membranes. It is speculated that this action may mediate the natriuretic effects of dopamine in renal tubular epithelia.  相似文献   

4.
Phosphoinositide phospholipase C activity was investigated in human melanoma grown as solid tumor xenografts in nude mice. The enzyme was dependent on calcium for activity and was stimulated by the detergent deoxycholate. The pH optimum was 5.5 in the absence of detergent, and in the presence of deoxycholate two pH maxima were present, 5.5 and 7.2. Phospholipase C activity was inhibited by the sulfhydryl reagent dithionitrobenzoate with an IC50 in the micromolar range. Phospholipase C activity was distributed widely in mouse tissues. The enzyme showed a progressive increase in activity from heart, liver, lung, colon, spleen, to brain tissue. Mouse and human melanomas grown as solid tumors had higher phospholipase C activity than mouse brain. The relatively high activity of this enzyme in melanoma may suggest a biological role for phospholipase C in solid tumor growth.  相似文献   

5.
Phospholipase A2 and acyltransferase activities were identified in membranes associated with purified pancreatic zymogen granules. In homogenate and granule membranes, phospholipase activity was linearly related to protein concentration and was Ca2(+)-dependent with an alkaline pH optimum. The Ca2+ sensitivity was observed over the range of concentrations through which intracellular ionic Ca2+ is elevated by physiological stimuli in intact cells. Intact zymogen granules and granule membranes also demonstrated reacylating activity in the presence and absence of an exogenous acceptor. Reacylating activity was related to the concentration of lyosphospholipid added and was optimally activated at alkaline pH. A more rapid rate of reacylation was observed when [14C]arachidonoyl CoA was employed as the donor molecule rather than [3H]arachidonate (plus coenzyme A); this suggests the absence of acyl-CoA synthetase in the purified granule membranes. We conclude that granule membrane phospholipase A2 and acyltransferases may be involved in arachidonic acid turnover in exocrine pancreas and perhaps in membrane fusion events associated with exocytosis.  相似文献   

6.
A phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]-hydrolytic activity was found to be present in the human platelet membrane fraction, with 20% of the total activity of the homogenate. The membrane-associated phospholipase C activity was extracted with 1% deoxycholate (DOC). The DOC-extractable phospholipase C was partially purified approx. 126-fold to a specific activity of 0.58 mumol of PtdIns-(4,5)P2 cleaved/min per mg of protein, by Q-Sepharose, heparin-Sepharose and Ultrogel AcA-44 column chromatographies. This purified DOC-extractable phospholipase C had an Mr of approx. 110,000, as determined by Ultrogel AcA-44 gel filtration. The enzyme exhibits a maximal hydrolysis for PtdIns-(4,5)P2 at pH 6.5 in the presence of 0.1% DOC. The addition of 0.1% DOC caused a marked activation of both PtdIns(4,5)P2 and phosphatidylinositol (PtdIns) hydrolyses by the enzyme. The enzyme hydrolysed PtdIns(4,5)P2 and PtdIns in a different Ca2+-dependent manner; the maximal hydrolyses for PtdIns(4,5)P2 and PtdIns were obtained at 4 microM- and 0.5 mM-Ca2+ respectively. In the presence of 1 mM-Mg2+, PtdIns(4,5)P2-hydrolytic activity was decreased at all Ca2+ concentrations examined, but PtdIns-hydrolytic activity was not affected.  相似文献   

7.
解脲脲原体是一种重要的病原微生物,近年来其耐药形势十分严峻,因此寻找一种全新的有效替代治疗方案尤为重要。本研究旨在探索光动力抗微生物化学疗法对解脲脲原体体外活性的影响。选取解脲脲原体两种生物群(Parvo生物群及T960生物群)代表菌株,包括标准株及临床株,与系列稀释的2.5~0.039 062 5 mmol/L光敏剂甲苯胺蓝孵育20 min或60 min,再以(633±10)nm红光照射,设置48、102、204和408 mJ/cm2共4组能量密度,48 h后判读结果。观察不同解脲脲原体与甲苯胺蓝孵育时间、甲苯胺蓝浓度、光照能量密度对光动力抗微生物化学疗法灭活解脲脲原体效果的影响,并观察两种生物群对光动力抗微生物化学疗法敏感性的差异。结果显示,光动力抗微生物化学疗法在体外对解脲脲原体有明显灭活作用。在光照能量密度及解脲脲原体与甲苯胺蓝孵育时间固定的前提下,这种灭活作用随甲苯胺蓝浓度的增加而增强;单一633 nm红光光源在408 J/cm2及以下的能量密度对解脲脲原体的活性无明显影响。在甲苯胺蓝浓度及解脲脲原体与甲苯胺蓝孵育时间固定的条件下,光动力抗微生物化学疗法对解脲脲原体的灭活作用随光照能量密度(48~408 mJ/cm2)的增加而增强;随甲苯胺蓝孵育时间(30~60 min)延长,光动力抗微生物化学疗法对解脲脲原体的灭活作用有增强的趋势。结果提示,解脲脲原体两种生物群对光动力抗微生物化学疗法的敏感性相似。本研究证实,光动力抗微生物化学疗法在体外能有效灭活解脲脲原体,有望成为解脲脲原体感染的有效替代治疗方法。  相似文献   

8.
Many studies have confirmed the enzymatic activity of a mammalian phosphatidylcholine (PC) phospholipase C (PLC) (PC-PLC), which produces diacylglycerol (DAG) and phosphocholine through the hydrolysis of PC in the absence of ceramide. However, the protein(s) responsible for this activity have never yet been identified. Based on the fact that tricyclodecan-9-yl-potassium xanthate can inhibit both PC-PLC and sphingomyelin synthase (SMS) activities, and SMS1 and SMS2 have a conserved catalytic domain that could mediate a nucleophilic attack on the phosphodiester bond of PC, we hypothesized that both SMS1 and SMS2 might have PC-PLC activity. In the present study, we found that purified recombinant SMS1 and SMS2 but not SMS-related protein have PC-PLC activity. Moreover, we prepared liver-specific Sms1/global Sms2 double-KO mice. We found that liver PC-PLC activity was significantly reduced and steady-state levels of PC and DAG in the liver were regulated by the deficiency, in comparison with control mice. Using adenovirus, we expressed Sms1 and Sms2 genes in the liver of the double-KO mice, respectively, and found that expressed SMS1 and SMS2 can hydrolyze PC to produce DAG and phosphocholine. Thus, SMS1 and SMS2 exhibit PC-PLC activity in vitro and in vivo.  相似文献   

9.
Receptor-regulated phospholipase D (PLD) is a key signaling pathway implicated in the control of fundamental biological processes. Here evidence is presented that in addition to protein kinase C (PKC) and Rho GTPases, Ca(2+) response evoked by sphingosine 1-phosphate (S1P) also participates to the enzyme regulation. Ca(2+) was found critical for PKC(alpha)-mediated PLD activation. Moreover, S1P-induced PLD activity resulted diminished by calmodulin inhibitors such as W-7 and CGS9343B implicating its involvement in the process. A plausible candidate for Ca(2+)-dependent PLD regulation by S1P was represented by calcineurin, in view of the observed reduction of the stimulatory effect by cyclosporin A. In contrast, monomeric GTP-binding protein Ral was translocated to membranes by S1P in a Ca(2+)-independent manner, ruling out its possible role in agonist-mediated regulation of PLD.  相似文献   

10.
The influence of the phospholipid composition and the physico-chemical properties of rat liver plasma membranes on the activity of membrane-bound phospholipase A2 has been investigated. The plasma membrane composition was modified by the aid of exogenous phospholipases A2, C and D, and by butanol treatment. The partially delipidated membranes thus obtained were enriched with different phospholipids. The steady-state fluorescent anisotropy of 1,6-diphenyl-1,3,5-hexatriene and the lipid order parameter-SDPH in the modified membranes were calculated. It was established that the activity of the membrane-bound phospholipase A2 was higher in rigid membranes and was decreased when the membrane lipid bilayer was fluidized.  相似文献   

11.
从超嗜热需氧古细菌AeropyrumpernixK1中抽提出染色体基因组,经PCR扩增得到磷脂酶A2基因,用带有His-tag标记的pET15b作为表达载体,在大肠杆菌BLP中成功地诱导表达。表达产物经过Ni-螯合柱一步得到纯化。SDS-PAGE检测只有一条带,其准确分子量为17,871kD。对纯化后的磷脂酶A2测定其酶活性和生物活性,得出其最适反应温度为90℃,最适pH范围为7·8~8·2。至此首次成功地在大肠杆菌中表达了古细菌嗜热磷脂酶A2,这将为以后对该酶的结构和功能以及耐热机制研究打下很好的基础,同时有利于古细菌研究领域的扩展。  相似文献   

12.
Phospholipase (PLase) activities in the plasma membrane of guinea pig peritoneal macrophages were studied, as these enzymes having such activity may be candidates for the release of arachidonic acid (AA) from phosphatidylcholine (PC). An AA release system operating at acidic pH was identified in the macrophage plasma membrane and characterized. This membrane-bound acidic PLase A2 had an optimum pH at 4.5, and enzyme activation was observed in Ca++-free medium; but the maximum activity was found at 0.5 mM Ca++ concentration. The Km value for PC of acidic PLase A2 was 4.2 microM, and a Michaelis-Menten relationship was evident. Calcium might act as a cofactor at some intermediate step during the activation of acidic PLase A2 in light of the uncompetitive manner of Ca++ action. Furthermore, the release of [3H]-AA from preradiolabelled macrophage plasma membranes occurred with the addition of Ca++ at pH 4.5. These data suggest that the acid PLase A2 is a component of the plasma membrane and is not due to lysosomal contamination since membrane-bound acidic PLase A2 properties are opposite to those found for lysosomal PLase A2.  相似文献   

13.
The phospholipase activity of rat jejunal brush-border membranes was examined in the presence of several solubilizing agents, by measuring the hydrolysis of endogenous membrane phospholipids, as well as the hydrolysis of exogenous, radiolabelled substrates. Enzyme activity was highly stimulated by dispersion in 1% solutions of bile salts, or in a synthetic, bile-salt derivative, 3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate (CHAPS). Under these conditions the endogenous membrane phospholipids were largely degraded to free fatty acids and water-soluble phosphate. In the presence of 1% CHAPS, hydrolysis of exogenous phosphatidylcholine was shown to be due to an initial phospholipase A2-type attack followed by a subsequent lysophospholipase-type attack. These activities co-purified with the brush-border membrane. Maximal phospholipase A2 hydrolysis occurred at an alkaline pH of 8-11, with bile-salt detergents present at greater than their critical micellar concentrations. Hydrolysis was completely divalent-ion independent. Phospholipase A2 activity was not stimulated by 50% diethyl ether or ethanol, or in the presence of 1% solutions of Triton X-100, Zwittergent 3-12, sodium dodecyl sulphate, or n-octylglucoside. Stimulation of phospholipase activity by detergents was not related to their effectiveness at solubilizing the membrane proteins. When assayed individually phosphatidylcholine and lysophosphatidylcholine were each hydrolyzed (at the sn-2 and sn-1 positions, respectively) at a rate of approximately 125 nmol/mg protein per min. When assayed together, the two substrates appeared to compete for the same active site over a wide range of concentrations. It was concluded that the brush-border membrane contains an integral membrane protein with phospholipase A2 and lysophospholipase activities, which is specifically stimulated by bile salts and bile salt-like detergents.  相似文献   

14.
The guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP gamma S) stimulated plasma membrane-associated phospholipase C. Phosphoinositides were the substrates for the reaction. Significant losses of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate occurred at lower doses of GTP gamma S than did significant loss of phosphatidylinositol. Loss of 32P-labeled phosphatidylinositol bisphosphate was equal when plasma membranes were treated with either 100 microM GTP or 100 microM GTP gamma S, but accumulation of inositol trisphosphate was more apparent when the nonhydrolyzable analogue was used. The action of GTP gamma S alone was not dependent on Ca2+ although loss of 32P-labeled phosphoinositides was stimulated by Ca2+ alone or with GTP gamma S. The results are consistent with a role for guanine nucleotide binding proteins in the activation of membrane-bound phosphoinositide-specific phospholipase C.  相似文献   

15.
In previous studies we demonstrated the triggering of the phospholipase C (PLC) pathway during the activation of an Ag-specific human CD4+ T lymphocyte clone by a mitogenic pair of CD2 (X11,D66) mAb. Similar conditions were applied to investigate a possible involvement of a phospholipase A2 (PLA2) acting as an additional alternative pathway during human T cell activation. Our results show that arachidonic acid or its derivatives are released after CD2 triggering. This release is largely independent of PLC activation and is mediated by a PLA2 because: 1) phosphatidylcholine is the preferential source of [3H]arachidonate release; 2) [3H]arachidonic acid release and phosphatidylcholine hydrolysis are blocked by two inhibitors of solubilized PLA2, mepacrine, and 4-p-bromophenacylbromide; and 3) we evidenced a PLA2 activity in cell homogenates. Extracellular calcium appears to play a critical role because the effects of CD2 mAb were inhibited in a Ca2(+)-depleted medium. In contrast, protein kinase C is not implicated since PMA, a protein kinase C activator, neither stimulated arachidonic acid release nor modulated CD2-induced arachidonic acid release. Cyclic AMP which has been proved to regulate the activity of the PLC in T lymphocytes does not appear to play an important role in the regulation of PLA2 activity since PGE2 has only a minimal effect on [3H]-arachidonate release. Altogether, these findings suggest that CD2 triggering stimulates a PLA2 activity in T lymphocytes via an extracellular Ca2(+)-dependent PLC protein kinase C independent mechanism.  相似文献   

16.
The effect of sulfatide and gangliosides GM1, GD1a and GT1b on the activity of phospholipase C from Clostridium perfringens on dilauroylphosphatidylcholine and of porcine pancreatic phospholipase A2 on dilauroylphosphatidic acid was studied in lipid monolayers containing different proportions of glycolipids under zero-order kinetics at various constant surface pressures. The presence of sulfatide in the monolayer increases the activity of phospholipase C at high surface pressures. Gangliosides shift the cut-off pressure to lower values and inhibit the action of phospholipase C. In mixed monolayers with dilauroylphosphatidic acid, sulfatide at a molar fraction of 0.5 increases the activity of phospholipase A2 at surface pressures below 18 mN/m and shows an inhibitory effect at higher pressures. Ganglioside GM1 at a molar fraction of 0.25 completely inhibits the enzyme above 20 mN/m and markedly reduces its activity at lower pressures. Gangliosides GD1a and GT1b abolish the enzyme activity at all pressures at molar fractions of 0.25 and 0.15, respectively. The modified velocity of the enzymatic reaction in the presence of glycosphingolipids is not due to an irreversible alteration of the catalytic activity.  相似文献   

17.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

18.
We have developed a simple fluorescent assay for detection of phospholipase A2 (PLA2) activity in zebrafish embryos that utilizes a fluorescent phosphatidylcholine substrate. By using this assay in conjunction with selective PLA2 inhibitors and Western blot analysis, we identified the principal activity in zebrafish embryogenesis as characteristic of the Ca2+-dependent cytosolic PLA2 (cPLA2) subtype. Embryonic cPLA2 activity remained constant from the 1-cell stage until the onset of somitogenesis, at which time it increased sharply. This increase was preceded by the expression of a previously identified zebrafish cPLA2 homologue (Nalefski, E., Sultzman, L., Martin, D., Kriz, R., Towler, P., Knopf, J., and Clark, J. (1994) J. Biol. Chem. 269, 18239-18249). By using a quenched BODIPY-labeled phosphatidylcholine that fluoresces only upon cleavage by PLA2, lipase activity was visualized in the cells of living embryos where it localized to perinuclear membranes.  相似文献   

19.
A phospholipase A2 activity was characterized in adult rabbit lung. This activity was calcium- and deoxycholate-dependent and displayed an alkaline pH optimum. Km and Vmax were 0.176 mM and 256.8 pmoles/min./mg protein respectively. The microsomal fraction displayed the highest enzymatic specific activity; the lowest activity was present in the cytosol. Yet this latter fraction accounted for the majority of the total activity. Although the specific activity was high within the lamellar body fraction this compartment contained only approximately 2% of the total activity. Phospholipase A2 activity was inhibited by bromophenacyl bromide, chlorpromazine and mepacrine in decreasing order of effectiveness. Treatment of the microsomes with increasing concentrations of NaC1 indicated that the lung phospholipase A2 activity was relatively loosely bound to the microsomal membranes and was maximally removed with salt at a concentration only slightly higher than physiological. Addition of calmodulin to the enzyme assay did not significantly alter hydrolysis of labelled phosphatidylcholine.  相似文献   

20.
Oligomers of prostaglandin B1 inhibited phospholipase A2 extracted from human neutrophils in a dose-dependent manner (IC50 = 5 microM), while the monomer was not inhibitory at concentrations of 10 microM or less. The inhibitory activity of PGB1 oligomers increased with increasing polymer size; PGB dimer had approximately one-half the maximal inhibitory activity of PGBx, while a trimer was almost as inhibitory as a tetramer and PGBx (n = 6). PGBx as an oil or as a water-soluble sodium-salt-inhibited Ca2(+)-dependent phospholipase A2 from snake venom, bovine pancreas, human neutrophil and platelet, human synovial fluid, and human sperm with IC50 values ranging from 0.5-7.5 microM. Inhibition was independent of added Ca2+ and was independent of substrate phospholipid concentration. Interaction of purified snake venom phospholipase A2 (Naja mocambique) with PGBx resulted in dose-dependent quenching of the enzyme's tryptophan fluorescence; 50% quench was noted with a molar ratio of PGBx/enzyme of 1.5. Inhibition of phospholipase A2 activity by PGBx was relieved in a dose-dependent manner by either defatted or untreated bovine serum albumin. PGBx is a potent in vitro inhibitor of a wide spectrum of phospholipases A2, and as illustrated in the accompanying paper, has profound inhibitory effects on arachidonic acid mobilization in human neutrophils and vascular endothelial cells. Modulation of cellular and extracellular phospholipases A2, and the bioactive transmitters generated by this catalytic event, may be a basic mechanism by which oligomers of prostaglandin B1 exert their reported membrane-protective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号