首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Structure of the yeast HOM3 gene which encodes aspartokinase   总被引:5,自引:0,他引:5  
The yeast HOM3 gene has been cloned molecularly by complementation of a HOM3 mutant. The gene is located about 8 kilobase pairs from HIS1 and is present as a single copy in the yeast genome. Mutations in HOM3 result in a requirement for threonine and methionine (or homoserine) for growth and a lack of detectable aspartokinase activity. The nucleotide sequence of HOM3 predicts an enzyme 414 amino acids long that shows homology to the three Escherichia coli aspartokinases, indicating that it is the structural gene for yeast aspartokinase. An approximately 1800-base pair mRNA is transcribed from the HOM3 gene, initiating at several start sites, 80 and 70 base pairs downstream, respectively, from two TATA boxes. Upstream of the TATA boxes is a single TGACTC sequence. This sequence has been shown to be essential for regulation of several genes that encode amino acid biosynthetic enzymes by the general control system. However, no increase in aspartokinase mRNA is observed under general control derepressing conditions.  相似文献   

2.
3.
Saccharomyces cerevisiae anthranilate synthase:indole-3-glycerol phosphate synthase is a multifunctional hetero-oligomeric enzyme encoded by genes TRP2 and TRP3. TRP2, encoding anthranilate synthase Component I, was cloned by complementation of a yeast trp2 mutant. The nucleotide sequence of TRP2 as well as that of TRP3 were determined. The deduced anthranilate synthase Component I primary structure from yeast exhibits only limited similarity to that of the corresponding Escherichia coli subunit encoded by trpE. On the other hand, yeast anthranilate synthase Component II and indole-3-glycerol phosphate synthase amino acid sequences from TRP3 are clearly homologous with the corresponding sequences of the E. coli trpG and trpC polypeptide segments and thereby establish the bifunctional structure of TRP3 protein. Based on comparisons of TRP3 amino acid sequence with homologous sequences from E. coli and Neurospora crassa, an 11-amino acid residue connecting segment was identified which fuses the trpG and trpC functions of the bifunctional TRP3 protein chain. These comparisons support the conclusion that the amino acid sequence of connectors in homologous multifunctional enzymes need not be conserved. Connector function is thus not dependent on a specific sequence. Nuclease S1 mapping was used to identify mRNA 5' termini. Heterogeneous 5' termini were found for both TRP2 and TRP3 mRNA. TRP2 and TRP3 5'-flanking regions were analyzed for sequences that might function in regulation of these genes by the S. cerevisiae general amino acid control system. The 9 base pair direct repeat (Hinnebusch, A.G., and Fink, G.R. (1983) J. Biol. Chem. 258, 5238-5247) and inverted repeats were identified in the 5'-flanking sequences of TRP2 and TRP3.  相似文献   

4.
A cDNA coding for the catalytic subunit of phosphorylase phosphatase (phosphatase C-I/phosphatase-1c) was cloned from a rabbit muscle cDNA library by screening with oligonucleotide probes. Ten clones were analyzed. The full cDNA sequence of 1395 base pairs contained an open reading frame of 990 base pairs flanked by 3' and 5' noncoding regions of 84 and 321 base pairs, respectively. The DNA sequence (and deduced amino acid sequence) of this cDNA is distinctly different from that of a clone of 1492 base pairs previously reported. Our cDNA is essentially identical to the 1492-base pair clone from residue 182 in the 3' direction, but it is completely different in the 5' direction. Consequently, the amino acid sequence deduced from our cDNA differs by 14 amino acids in the amino terminal from that previously reported and extends for an additional 19 amino acids. Probes to the divergent and common region of our cDNA clone hybridized to an mRNA of the same size by Northern blotting. Thus the cDNA we have isolated appears to code for an isoform of the catalytic subunit of phosphorylase phosphatase.  相似文献   

5.
Three species of unintegrated supercoiled Harvey sarcoma virus DNA (6.6, 6.0, and 5.4 kilobase pairs) have been molecularly cloned from Harvey sarcoma virus-infected cells. On the basis of restriction enzyme analyses, the 6.6- and 6.0-kilobase pair viral DNAs contain two and one copies, respectively, of a 650-base pair DNA segment which contains sequences present at the 3' and 5' termini of the viral genome. R-loop structures formed between Moloney leukemia virus RNA and the cloned Harvey sarcoma virus DNA indicated that about 500 base pairs of the 650-base pair repeating segment was complementary to the 3' end of the viral RNA. During amplification in the Escherichia coli host, some recombinants containing the 6.6- or the 6.0-kilobase pair Harvey sarcoma virus DNA insert acquired or lost the complete 650-base pair DNA segment. These changes occurred in both recA+ and recA- E. coli.  相似文献   

6.
The DNA sequence was determined for the cloned Agrobacterium sp. strain ATCC 21400 beta-glucosidase gene, abg. High-resolution nuclease S1 protection studies were used to map the abg mRNA 5' and 3' termini. A putative abg promoter was identified whose sequence shows similarities to the consensus promoter of Escherichia coli and with the nif promoter regions of Klebsiella. The abg coding sequence was 1,374 nucleotides long. The molecular weight of the enzyme, based on the predicted amino acid sequence, was 51,000. The observed Mr was 50,000 to 52,000. A region of deduced protein sequence was homologous to a region from two other beta-glucosidase sequences. This region of homology contained a putative active site by analogy with the active site of hen egg white lysozyme.  相似文献   

7.
P Tekamp-Olson  R Najarian  R L Burke 《Gene》1988,73(1):153-161
We have isolated the gene which encodes the glycolytic enzyme phosphoglucoisomerase (PGI) from the yeast Saccharomyces cerevisiae by functional complementation of a yeast mutant deficient in PGI activity with DNA from a wild-type yeast genomic library. The cloned gene has been localized by hybridization of specific DNA fragments to total yeast poly(A)+ RNA and by complementation of the mutant phenotype with subclones. The gene is expressed as an abundant mRNA of 1.9-kb and encodes a protein of 554 amino acids with an Mr of 61310. The nucleotide sequence of the gene as well as the 5' and 3' flanking regions are presented. The predicted PGI amino acid sequence shows a high degree of homology with the sequence predicted for human and mouse neuroleukin, a putative neurotropic factor. The codon usage within the coding region is very restricted, characteristic of a highly expressed yeast gene.  相似文献   

8.
9.
We have isolated a cDNA clone for an interferon-induced 15-kDa protein. The cDNA clone was prepared from mRNA isolated from interferon-beta-treated human Daudi cells. The clone of 635 base pairs contains an open reading frame coding for a protein of 145 amino acids, and suggests for the mRNA a 75-base pair 5' untranslated and a 125-base pair 3' untranslated region. Approximately 85% of the amino acid sequence of the 15-kDa protein has been independently obtained from 2 nmol of material using microsequencing technology on the N terminus of the intact protein and on tryptic and chymotryptic peptides. The amino acid sequence of the isolated protein is identical to the amino acid sequence deduced from the cDNA. Northern blot analysis confirmed that the mRNA for the 15-kDa protein is undetectable in untreated cells, but is greatly induced following interferon treatment.  相似文献   

10.
11.
12.
13.
14.
The wild-type yeast nuclear gene, PIS, encodes phosphatidylinositol synthase (CDPdiacylglycerol-inositol 3-phosphatidyltransferase, EC 2.7.8.11) (Nikawa, J., and Yamashita, S. (1984) Eur. J. Biochem. 143, 251-256). We now report the sequence of the cloned 2, 129-base pair DNA and the location of the PIS coding region within the sequence. The PIS coding frame is capable of encoding 220 amino acid residues with a calculated molecular weight of 24,823. On Northern blot analysis, an RNA species that hybridized with the coding region was detected in the total poly(A)+ RNA of the wild-type yeast. The primary translation product contains a region showing local sequence homology with yeast phosphatidylserine synthase (EC 2.7.8.8) and Escherichia coli 3-phosphatidyl-1'-glycerol-3'-phosphate synthase (EC 2.7.8.5), suggesting that these three enzymes are evolutionarily related. The PIS gene was disrupted in vitro through insertion of the yeast HIS3 gene into the coding region. A heterozygous diploid, PIS/pis::HIS3, constructed from a PIS/PIS his3/his3 diploid by replacing one of the wild-type PIS genes with the disrupted PIS gene, showed no segregation of viable His+ spores on tetrad analysis, indicating that disruption of the PIS gene is lethal. The nonviable spores were in an arrested state with a characteristic terminal phenotype, suggesting that the function of the PIS gene is essential for progression of the yeast cell cycle.  相似文献   

15.
16.
17.
18.
19.
20.
A cDNA coding for the non-histone chromosomal protein HMG-I, or its isoform HMG-Y, was isolated from a murine Friend cell library using synthetic oligonucleotide hybridization probes. Sequence analysis showed that the 1670-base pair full length cDNA insert consists of a 201-base pair, G/C-rich (74%), 5'-untranslated region, a 288-base pair amino acid coding sequence, and an unusually long 1182-base pair 3'-untranslated region. The deduced 96-residue amino acid coding sequence of the murine HMG-I(Y) cDNA is very similar to the reported amino acid sequence of human HMG-I, except that it lacks 11 internal amino acids reported in the human protein. Based on Southern blot hybridization analysis of genomic DNA, there appear to be fewer than five copies of HMG-I(Y) genes in the haploid murine genome. These murine HMG-I(Y) genes contain a large (at least 890 base pairs) exon that includes most, or all, of the 3'-untranslated region; whereas the much shorter 5'-untranslated region and amino acid coding sequences are interrupted by at least one intron. A single size class (approximately 1700 nucleotides in murine cells and 2000 nucleotides in human cells) of HMG-I(Y) mRNAs was detected at high levels in total RNA extracts from rapidly dividing, transformed cells, but to a lesser extent, or not at all, in extracts from slowly or non-dividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号