首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increased levels of reactive oxygen species (ROS) by hyperglycemia can induce apoptosis of renal cells and diabetic nephropathy. The redox balance in the renal cell seems, therefore, of the utmost importance. ROS-mediated apoptosis may be further aggravated by an inadequate cytoprotective response against ROS. When there are insufficient cytoprotective and ROS scavenging molecules, ROS lead to considerable cellular damage and to a point of no return in apoptosis. Induction of cytoprotective proteins may prevent or attenuate apoptosis, renal cell injury, and finally diabetic nephropathy. Here, we discuss some mechanisms of apoptosis and several strategies that have been probed to ameliorate, or to prevent apoptosis in the diabetic kidney.  相似文献   

2.
Beryllium (Be), the etiologic agent of chronic beryllium disease, is a toxic metal that induces apoptosis in human alveolar macrophages. We tested the hypothesis that Be stimulates the formation of reactive oxygen species (ROS) which plays a role in Be-induced macrophage apoptosis. Mouse macrophages were exposed to 100 microM BeSO4 in the absence and presence of the catalytic antioxidant MnTBAP (100 microM). Apoptosis was measured as the percentage of TUNEL+ and caspase-8+ cells. ROS production was measured by flow cytometry using the fluorescence probes, dihydroethidine (DHE) and dichlorofluorescein diacetate (DCFH-DA). Be-exposed macrophages had increased TUNEL+ cells (15+/-1% versus controls 1+/-0.2%, P<0.05) and increased caspase-8+ cells (18.7+/-2% versus controls 1.8+/-0.4%, P<0.05). Be-induced caspase-8 activation, and a 4-fold increase in ROS formation, was ameliorated by exposure to MnTBAP. Hydrogen peroxide (30 microM) exposure potentiated Be-induced caspase-8 activation, and was also attenuated by MnTBAP. Our data are the first to demonstrate that Be stimulates macrophage ROS formation which plays an important role in Be-induced macrophage apoptosis.  相似文献   

3.
Sunscreen enhancement of UV-induced reactive oxygen species in the skin   总被引:1,自引:0,他引:1  
The number of UV-induced (20 mJ cm(-2)) reactive oxygen species (ROS) generated in nucleated epidermis is dependent upon the length of time the UV filter octocrylene, octylmethoxycinnamate, or benzophenone-3 remains on the skin surface. Two-photon fluorescence images acquired immediately after application of each formulation (2 mg cm(-2)) to the skin surface show that the number of ROS produced is dramatically reduced relative to the skin-UV filter control. After each UV filter remains on the skin surface for t=20 min, the number of ROS generated increases, although it remains below the number generated in the control. By t=60 min, the filters generate ROS above the control. The data show that when all three of the UV filters penetrate into the nucleated layers, the level of ROS increases above that produced naturally by epidermal chromophores under UV illumination.  相似文献   

4.
The effects of cellular antioxidant capacity on hyperthermia (HT)-induced apoptosis and production of antiapoptotic heat shock proteins (HSPs) were investigated in HL-60 cells and in HL-60AR cells that are characterized by an elevated endogenous catalase activity. Exposure of both cell lines to 43 degrees C for 1 h initiated apoptosis. Apoptosis peaked at 3-6 h after heat exposure in the HL-60 cells. Whereas HL-60AR cells were partially protected against HT-induced apoptosis at these early time points, maximal levels of apoptosis were detected later, i.e. 12-18 h after heat exposure. This differential induction of apoptosis was directly correlated to the induction of the antiapoptotic HSP27 and HSP70. In particular, in the HL-60 cells HSP27 was significantly induced at 12-18 h after exposure to 43 degrees C when apoptosis dropped. In contrast, coinciding with the late onset of apoptosis in HL-60AR cells at that time HL-60AR cells lacked a similar HSP response. In line with the higher antioxidant capacity HL-60AR cells accumulated reactive oxygen species to a lesser degree than HL-60 cells after heat treatment. Protection from HT-induced apoptosis as well as diminished heat-induced HSP27 expression was also observed after cotreatment of HL-60 cells with 43 degrees C and catalase but not with superoxide dismutase. These data emphasize the pivotal role of reactive oxygen species for HT induced pro- and antiapoptotic pathways.  相似文献   

5.
Manganese (Mn) is an essential dietary nutrient, but an excess or accumulation can be toxic. Disease states, such as manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as providing an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body.  相似文献   

6.
To ensure that a constant number of T cells are preserved in the peripheral lymphoid organs, the production and proliferation of T cells must be balanced out by their death. Newly generated T cells exit the thymus and are maintained as resting T cells. Transient disruption of homeostasis occurs when naïve T cells undergo antigen-induced expansion, a process involving intracellular signaling events that lead to T cell proliferation, acquisition of effector functions, and, ultimately, either apoptosis or differentiation into long-lived memory cells. The last decision point (death vs. differentiation) is a crucial one: it resets lymphoid homeostasis, promotes protective immunity, and limits autoimmunity. Despite its importance, relatively little is known about the molecular mechanisms involved in this cell fate decision. Although multiple mechanisms are likely involved, recent data suggest an underlying regulatory role for reactive oxygen species in controlling the susceptibility of T cells to apoptosis. This review focuses on recent advances in our understanding of how reactive oxygen species modulate T-cell apoptosis.  相似文献   

7.
Apoptotic cell death plays a critical role in tissue injury and organ dysfunction under a variety of pathological conditions. The present study was designed to determine whether apoptosis may contribute to posttraumatic cardiac dysfunction, and if so, to investigate the mechanisms involved. Male adult mice were subjected to nonlethal traumatic injury, and cardiomyocyte apoptosis, cardiac function, and cardiac production of reactive oxygen/nitrogen species were determined. Modified Noble-Collip drum trauma did not result in circulatory shock, and the 24-h survival rate was 100%. No direct mechanical traumatic injury was observed in the heart immediately after trauma. However, cardiomyocyte apoptosis gradually increased and reached a maximal level 12 h after trauma. Significantly, cardiac dysfunction was observed 24 h after trauma in the isolated perfused heart. This was completely reversed when apoptosis was blocked by administration of a nonselective caspase inhibitor immediately after trauma. In the traumatized hearts, reactive nitrogen species (e.g., nitric oxide) and reactive oxygen species (e.g., superoxide) were both significantly increased, and maximal nitric oxide production preceded maximal apoptosis. Moreover, a highly cytotoxic reactive species, peroxynitrite, was markedly increased in the traumatic heart, and there was a significant positive correlation between cardiac nitrotyrosine content and caspase 3 activity. Our present study demonstrated for the first time that nonlethal traumatic injury caused delayed cell death and that apoptotic cardiomyocyte death contributes to posttrauma organ dysfunction. Antiapoptotic treatments, such as blockade of reactive nitrogen oxygen species generation, may be novel strategies in reducing posttrauma multiple organ failure.  相似文献   

8.
9.
10.
Capsaicin is a vanilloid quinone analog that inhibits the plasma membrane electron transport (PMOR) system and induces apoptosis in transformed cells. Using a cytofluorimetric approach we have determined that capsaicin induces a rapid increase of reactive oxygen species (ROS) followed by a subsequent disruption of the transmembrane mitochondrial potential (DeltaPsim) and DNA nuclear loss in transformed cell lines and in mitogen activated human T cells. This apoptotic pathway is biochemically different from the typical one induced by either ceramide or edelfosine where, in our system, the DeltaPsim dissipation precedes the generation of reactive oxygen species. Neither production of ROS nor apoptosis was found in capsaicin-treated resting T cells where the activity of the PMOR system is minimal when compared with mitogen activated or transformed T cells. Capsaicin also induces Ca2+ mobilization in activated but not in resting T cells. However, preincubation of cells with BAPTA-AM, which chelate cytosolic free calcium, did not prevent ROS generation or apoptosis induced by capsaicin, suggesting that ROS generation in capsaicin treated cells is not a consequence of calcium signaling and that the apoptotic pathway may be separated from the one that mobilizes calcium. Moreover, we present data for the implication of a possible vanilloid receptor in calcium mobilization, but not in ROS generation. These results provide evidence that the PMOR system may be an interesting target to design antitumoral and anti-inflammatory drugs.  相似文献   

11.
水分代谢是植物基础代谢的重要组成部分,气孔开关精细地调节着植物水分散失和光合作用。气孔运动受到多种因子的调控,保卫细胞内大量的第二信使分子是响应外界刺激、调节保卫细胞代谢方式、改变保卫细胞水势进而引起气孔开关的重要功能组分。细胞内的活性氧就是其中重要的成员之一。保卫细胞中的活性氧包括过氧化氢、超氧阴离子自由基和羟自由基等,这些活性氧可以通过光合作用、呼吸作用产生或通过专门的酶催化合成,在触发下游生理反应、完成信号转导后由专门的酶将其清除。在植物激素(脱落酸、水杨酸)、一氧化氮、质外体钙调素、细胞外ATP等因子调节气孔运动的过程中,活性氧都发挥了介导作用。该文对于近年来活性氧在气孔运动过程中发挥的作用方面的研究进展进行了综述。  相似文献   

12.
The role of reactive oxygen species in hormonal responses   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

13.
Some varieties of sweet pepper accumulate non-pungent isosters of capsaicin, a type of compounds exemplified by capsiate. The only structural difference between capsaicin and capsiate is the link between the vanillyl and the acyl moieties, via an amide bond in the former and via an ester bond in the latter. By flow cytometry analyses we have determined that nor-dihydrocapsiate, a simplified analogue of capsiate, is a pro-oxidant compound that induces apoptosis in the Jurkat tumor cell line. The nuclear DNA fragmentation induced by nor-dihydrocapsiate is preceded by an increase in the production of reactive oxygen species and by a subsequent disruption of mitochondria transmembrane potential. Capsiate-induced apoptosis is initiated at the S phase of the cell cycle and is mediated by a caspase-3-dependent pathway. The accumulation of intracellular reactive oxygen species in capsiate-treated cells is greatly prevented by the presence of ferricyanide, suggesting that capsiates target a cellular redox system distinct from the one involved in the mitochondrial electron-chain transport. Methylation of the phenolic hydroxyl of nor-dihydrocapsiate completely abrogated the ability to induce reactive oxygen species and apoptosis, highlighting the relevance of the presence of a free phenolic hydroxyl for the pro-oxidant properties of capsaicinoids.  相似文献   

14.
Curcumin exhibits anticancer activity in vivo and triggers tumor cell apoptosis in vivo and in vitro. Several in vitro studies suggest that curcumin-induced apoptosis is associated with reactive oxygen species (ROS) production and/or oxidative stress in transformed cells. This study compared and contrasted the effects of curcumin on human skin cancer cells and their respiration-deficient (rho0) clones to characterize the prospective oxidative stress signaling responsible for initiating apoptosis. Curcumin promoted a dose-and time-dependent G2/M cell cycle arrest and/or apoptosis in COLO 16 cells. Apoptosis induction in COLO 16 cells was associated with DNA fragmentation, cell shrinkage, the externalization of cell membrane phosphatidylserine, and mitochondrial disruption, which were preceded by an increase in intracellular ROS production. Pharmacologically lowering the mitochondrial bioenergetic capacity, as well as the constitutive ROS levels, in COLO 16 cells suppressed the cytotoxic effects of curcumin. Correspondingly, the rho0 counterparts of COLO 16 cells were markedly resistant to ROS production, mitochondrial disruption, and DNA fragmentation following curcumin exposure. These observations implied that the diminution of mitochondrial ROS production protected cells against the cytotoxic effects of curcumin, and support the notion that mitochondrial respiration and redox tone are pivotal determinants in apoptosis signaling by curcumin in human skin cancer cells.  相似文献   

15.
Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.  相似文献   

16.
While vanadium compounds are known as potent toxicants as well as carcinogens, the mechanisms of their toxic and carcinogenic actions remain to be investigated. It is believed that an improper cell growth regulation leads to cancer development. The present study examines the effects of vanadate on cell cycle control and involvement of reactive oxygen species (ROS) in these vanadate-mediated responses in a human lung epithelial cell line, A549. Under vanadate stimulation, A549 cells generated hydroxyl radical (*OH), as determined by electron spin resonance (ESR), and hydrogen peroxide (H2O2) and superoxide anion (O2*-), as detected by flow cytometry using specific dyes. The mechanism of ROS generation involved the reduction of molecular oxygen to O2*- by both a flavoenzyme-containing NADPH complex and the mitochondria electron transport chain. The O2*- in turn generated H2O2, which reacted with vanadium(IV) to generate *OH radical through a Fenton-type reaction (V(IV) + H2O2 --> V(V) +*OH + OH-). The ROS generated by vanadate induced G2/M phase arrest in a time- and dose-dependent manner as determined by measuring DNA content. Vanadate also increased p21 and Chk1 levels and reduced Cdc25C expression, leading to phosphorylation of Cdc2 and a slight increase in cyclin B1 expression as analyzed by Western blot. Catalase, a specific antioxidant for H2O2, decreased vanadate-induced expression of p21 and Chk1, reduced phosphorylation of Cdc2Tyr15, and decreased cyclin B1 levels. Superoxide dismutase, a scavenger of O2*-, or sodium formate, an inhibitor of *OH, had no significant effects. The results obtained from the present study demonstrate that among ROS, H2O2 is the species responsible for vanadate-induced G2/M phase arrest. Several regulatory pathways are involved: (1) activation of p21, (2) an increase of Chk1 expression and inhibition of Cdc25C, which results in phosphorylation of Cdc2 and possible inactivation of cyclin B1/Cdc2 complex.  相似文献   

17.
It is becoming more evident that not only can drugs and environmental chemicals interfere with normal fetal development by causing structural malformations, such as limb defects, but that xenobiotic exposure during development can also cause biochemical and functional abnormalities that may ultimately lead to cancer later on in life. Fetal toxicity may be partly mediated by the embryonic bioactivation of xenobiotics to free radical intermediates that can lead to oxidative stress and potentially lead, in some cases, to carcinogenesis. Using a number of examples, this review will focus on the role of reactive oxygen species (ROS) in the mechanisms pertaining to in utero initiated cancers.  相似文献   

18.
Recent studies indicate that arsenic may generate reactive oxygen species to exert its toxicity. However, the mechanism is still unclear. In this study, we demonstrate that arsenite is able to induce apoptosis in a concentration- and time-dependent manner; however, arsenate is unable to do so. An increase of intracellular peroxide levels was accompanied with arsenite-induced apoptosis, as demonstrated by flow cytometry using DCFH-DA. N-Acetyl-L -cysteine (a thiol-containing antioxidant), diphenylene iodonium (an inhibitor of NADPH oxidase), 4,5-dihydro-1,3-benzene disulfonic acid (a selective scavenger of O) and catalase significantly inhibit arsenite-induced apoptosis and intracellular fluorescence intensity. In contrast, allopurinol (an inhibitor of xanthine oxidase), indomethacin (an inhibitor of cyclooxygenase), superoxide dismutase, or PDTC had no effect on arsenite-induced cell death. Activation of CPP32 activity, PARP (a DNA repair enzyme) degradation, and release of cytochrome c from mitochondria to the cytosol are involved in arsenite-induced apoptosis, and Bcl-2 antagonize arsenite-induced apoptosis by a mechanism that interferes in the activity of CPP32. These results lead to a working hypothesis that arsenite-induced apoptosis is triggered by the generation of hydrogen peroxide through activation of flavoprotein-dependent superoxide-producing enzymes (such as NADPH oxidase), and hydrogen peroxide might play a role as a mediator to induce apoptosis through release of cytochrome c to cytosol, activation of CPP32 protease, and PARP degradation. J. Cell. Physiol. 177:324–333, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
L Pan  X Wang  S Yang  X Wu  I Lee  X Zhang  RA Rupp  J Xu 《PloS one》2012,7(8):e44142
Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H(2)O(2)), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H(2)O(2) is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb.  相似文献   

20.
Role of reactive oxygen species (ROS) in apoptosis induction   总被引:28,自引:0,他引:28  
Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号