首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Angiogenic therapy, which involves the use of an exogenous stimulus to promote blood vessel growth, is an attractive approach for the treatment of ischemic diseases. It has been shown in animal models that the stimulation of blood vessel growth leads to the growth of the whole vascular tree, improvement of ischemic tissue perfusion and improved muscle aerobic energy metabolism. However, very few positive results have been gained from Phase 2 and 3 clinical angiogenesis trials. Many reasons have been given for the failures of clinical trials, including poor transgene expression (in gene-therapy trials) and instability of the vessels induced by therapy. In this Review, we discuss the selection of preclinical models as one of the main reasons why clinical translation has been unsuccessful thus far. This issue has received little attention, but could have had dramatic implications on the expectations of clinical trials. We highlight crucial differences between human patients and animal models with regards to blood flow and pressure, as well as issues concerning the chronic nature of ischemic diseases in humans. We use these as examples to demonstrate why the results from preclinical trials might have overestimated the efficacy of angiogenic therapies developed to date. We also suggest ways in which currently available animal models of ischemic disease could be improved to better mimic human disease conditions, and offer advice on how to work with existing models to avoid overestimating the efficacy of new angiogenic therapies.  相似文献   

2.
3.
Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands.  相似文献   

4.
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is ‘stem cell therapy’ based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation – appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.  相似文献   

5.
Mesenchymal Stem Cells (MSCs) are non-hematopoietic multi-potent stem-like cells that are capable of differentiating into both mesenchymal and non-mesenchymal lineages. In fact, in addition to bone, cartilage, fat, and myoblasts, it has been demonstrated that MSCs are capable of differentiating into neurons and astrocytes in vitro and in vivo. MSCs are of interest because they are isolated from a small aspirate of bone marrow and can be easily expanded in vitro. As such, these cells are currently being tested for their potential use in cell and gene therapy for a number of human diseases. Nevertheless, there are still some open questions about origin, multipotentiality, and anatomical localization of MSCs. In this review, we discuss clinical trials based on the use of MSCs in cardiovascular diseases, such as treatment of acute myocardial infarction, endstage ischemic heart disease, or prevention of vascular restenosis through stem cell-mediated injury repair. We analyze data from clinical trials for treatment of osteogenesis imperfecta (OI), which is a genetic disease characterized by production of defective type I collagen. We describe progress for neurological disease treatment with MSC transplants. We discuss data on amyotrophic lateral sclerosis (ALS) and on lysosomal storage diseases (Hurler syndrome and metachromatic leukodystrophy). A section of review is dedicated to ongoing clinical trials, involving MSCs in treatment of steroid refractory Graft Versus Host Disease (GVHD); periodontitis, which is a chronic disease affecting periodontium and causing destruction of attachment apparatus, heart failure, and bone fractures. Finally, we will provide information about biotech companies developing MSC therapy.  相似文献   

6.
Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.  相似文献   

7.
用于转基因的阳离子脂质体   总被引:1,自引:0,他引:1  
通过直接导入外源基因来治疗人类疾病的方法需要一种有效、安全并且可重复进行的载体,阳离子脂质体是基本满足这些条件的有限几种载体中的一员. 目前已经有十几种阳离子脂质体. 这些脂质体通过外周的电荷与DNA相结合,静电吸引形成复合物在与细胞膜相互作用后,通过细胞的内吞或融合作用使复合物进入细胞内,从而将外源基因导入细胞,这种DNA传递技术的有效性和安全性已经确立. 二例利用阳离子脂质体的人体基因治疗临床试验也已开始实施,将来会有更多的临床试验得到开展,阳离子脂质体在基因治疗领域有较好的前景.  相似文献   

8.
癌症是严重危害人类健康的重大疾病之一,寻找高效可行的癌症治疗方法一直是医学研究的重要课题。继外科手术、放疗、化疗、免疫治疗之后,随着人们对基因组学的深入了解及分子生物学技术的不断发展,基因治疗作为一种全新的治疗理念已被证明具有显著临床疗效及优势。对癌症基因治疗的原理及几种新技术的应用进行介绍,并对基因治疗未来在临床上的应用加以展望。  相似文献   

9.
Gene therapy has recently witnessed accelerated progress as a new therapeutic strategy with the potential to treat a range of inherited and acquired diseases. Billions of dollars have been invested in basic and clinical research on gene medicine, with ongoing clinical trials focused on cancer, monogenic diseases, cardiovascular diseases and other refractory diseases. Advances addressing the inherent challenges of gene therapy, particularly those related to retaining the delivery efficacy and minimizing unwanted immune responses, provide the basis for the widespread clinical application of gene medicine. Several types of genes delivered by viral or non‐viral delivery vectors have demonstrated encouraging results in both animals and humans. As augmented by clinical indications, gene medicine techniques have rapidly become a promising alternative to conventional therapeutic strategies because of their better clinical benefit and lower toxicities. Their application in the clinic has been extensive as a result of the approval of many gene therapy drugs in recent years. In this review, we provide a comprehensive overview of the clinical translation of gene medicine, focusing on the key events and latest progress made regarding clinical gene therapy products. We also discuss the gene types and non‐viral materials with respect to developing gene therapeutics in clinical trials.  相似文献   

10.
Antisense oligonucleotides as therapeutic agents.   总被引:27,自引:0,他引:27  
Antisense oligonucleotides can block the expression of specific target genes involved in the development of human diseases. Therapeutic applications of antisense techniques are currently under investigation in many different fields. The use of antisense molecules to modify gene expression is variable in its efficacy and reliability, raising objections about their use as therapeutic agents. However, preliminary results of several clinical studies demonstrated the safety and to some extent the efficacy of antisense oligodeoxynucleotides (ODNs) in patients with malignant diseases. Clinical response was observed in some patients suffering from ovarian cancer who were treated with antisense targeted against the gene encoding for the protein kinase C-alpha. Some hematological diseases treated with antisense oligos targeted against the bcr/abl and the bcl2 mRNAs have shown promising clinical response. Antisense therapy has been useful in the treatment of cardiovascular disorders such as restenosis after angioplasty, vascular bypass graft occlusion, and transplant coronary vasculopathy. Antisense oligonucleotides also have shown promise as antiviral agents. Several investigators are performing trials with oligonucleotides targeted against the human immunodeficiency virus-1 (HIV-1) and hepatitis viruses. Phosphorothioate ODNs now have reached phase I and II in clinical trials for the treatment of cancer and viral infections, so far demonstrating an acceptable safety and pharmacokinetic profile for continuing their development. The new drug Vitravene, based on a phosphorothioate oligonucleotide designed to inhibit the human cytomegalovirus (CMV), promises that some substantial successes can be reached with the antisense technique.  相似文献   

11.
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical . We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.  相似文献   

12.
Gene therapy aims at transferring a therapeutic gene into human somatic cells in order to treat a disease. Originally addressed to hereditary genetic disorders, gene therapy has found therapeutic applications in cancer, infectious diseases and degenerative disorders, particularly those of the nervous system. Although gene transfer into humans has been demonstrated in several clinical trials, with more than 300 currently underway worldwide, there is still no single outcome that undoubtedly showed a consistent benefit for the patient. Nevertheless, the expectations for gene therapy are still high, and the prospects of future clinical success are increasing together with the growing of the field. The development of better delivery systems specifically tailored to individual diseases, with sustained expression of the therapeutic gene in the appropriate cells, will in the end make possible true therapeutic applications of human gene transfer.  相似文献   

13.
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.  相似文献   

14.
Cystic fibrosis is a disease for which a number of Phase I clinical trials of gene therapy have been initiated. Several factors account for the high level of interest in a gene therapy approach to this disease. CF is the most common lethal inherited disease in Caucasian populations. The lung, the organ that is predominantly responsible for the morbidity and mortality in CF patients, is accessible by a non-invasive method, the inhalation of aerosols. The vectors employed in the Phase I trials have included recombinant adenoviruses, adeno-associated viruses and cationic lipids. While there have been some positive results, the success of the vectors until now has been limited by either immunogenicity or low efficiency. A more fundamental obstacle has been the absence of appropriate receptors on the apical surface of airway epithelial cells. Molecular conjugates with carbohydrate substitution to provide targeting offer several potential advantages. Lactosylated polylysine in which 40% of the lysines have been substituted with lactose has been shown to provide a high efficiency of transfection in primary cultures of CF airway epithelial cells. Other important features include a relatively low immunogenicity and cytotoxicity. Most importantly, the lactosylated polylysine was demonstrated to give nuclear localization in CF airway epithelial cells. Until now, most non-viral vectors did not have the capability to provide nuclear localization. These unique qualities provided by the lactosylation of non-viral vectors, such as polylysine may help to advance the development of molecular conjugates sufficiently to warrant their use in future clinical trials for the gene therapy of inherited diseases of the lung.  相似文献   

15.
Monoclonal antibodies and therapy of human cancers   总被引:1,自引:0,他引:1  
This survey is an overview of the applications of murine, humanized and recombinant monoclonal antibodies for in vivo diagnostic and therapeutic applications. Monoclonal antibodies (mAb) have been applied to the diagnosis and therapy of an array of human diseases. The initial failures of early clinical trials have been overcome through the production of a new generation of mAb which features reduced immunogenicity and improved targeting abilities. The early models of mAb therapy were focused on enhancing the cytolytic mechanisms against the tumor cells. More recently, successful mAb-based therapies were targeted to molecules involved in the regulation of growth of cancer cells. This has highlighted the relevance of understanding receptor-mediated signaling events, and may provide new opportunities for anti-tumor antibody targeting. Despite all the difficulties, clinical data is outlining an increasingly significant role for antibody-mediated cancer therapy as a versatile and powerful instrument in cancer treatment. One reasonable expectation is that treatment at an earlier stage in the disease process or in minimal residual disease may be more advantageous.  相似文献   

16.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

17.
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber''s congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt''s disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.  相似文献   

18.
19.
The concept of gene therapy was envisioned soon after the emergence of restriction endonucleases and subcloning of mammalian genes in phage and plasmids. Over the ensuing decades, vectors were developed, including nonviral methods, integrating virus vectors (gammaretrovirus and lentivirus), and non-integrating virus vectors (adenovirus, adeno-associated virus, and herpes simplex virus vectors). Preclinical data demonstrated potential efficacy in a broad range of animal models of human diseases, but clinical efficacy in humans remained elusive in most cases, even after decades of experience in over 1000 trials. Adverse effects from gene therapy have been observed in some cases, often because of viral vectors retaining some of the pathogenic potential of the viruses upon which they are based. Later generation vectors have been developed in which the safety and/or the efficiency of gene transfer has been improved. Most recently this work has involved alterations of vector envelope or capsid proteins either by insertion of ligands to target specific receptors or by directed evolution. The disease targets for gene therapy are multiple, but the most promising data have come from monogenic disorders. As the number of potential targets for gene therapy continues to increase, and a substantial number of trials continue with both the standard and the later generation vector systems, it is hoped that a therapeutic niche for gene therapy will emerge in the coming decades.  相似文献   

20.
Non-viral gene therapies are currently under development that employ drug-delivery methods for targeting genes to selected cells in the body, where they express therapeutic gene products. Various methods have been described for non-viral gene therapy, ranging from the direct intramuscular injection of purified DNA to the systemic administration of formulations comprising DNA and lipids, proteins, peptides, or polymers. Products for non-viral gene therapies are designed both for direct administration to patients by conventional routes and for expression of a therapeutic product over a finite period of time in a manner similar to conventional medicines. Initial preclinical and clinical studies indicate that non-viral gene delivery methods exhibit safety profiles similar to conventional pharmaceutical or biological products. Clinical trials have been proposed, or are currently under way, to assess the applicability of non-viral gene therapy for a variety of disorders, including cystic fibrosis, cancer, and peripheral vascular disease. Non-viral techniques may soon allow gene therapy to be applied in clinical practice alongside conventional medicines for the treatment of common diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号