首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

2.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

3.
We compared the action of K+ on aldosterone secretion from isolated bovine adrenal glomerulosa cells with that of ionophore A23187. Addition of either 50 nM-A23187 or 8 mM-K+ to perifused cells induces a similar initial aldosterone-secretory responses, and a similar sustained increases in Ca2+ entry. However, K+-induced secretion is more sustained than is A23187-induced secretion, even though each agonist appears to act by increasing Ca2+ entry into the cells. When [3H]inositol-labelled cells are stimulated by 8 mM-K+, a small decrease in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is observed. This decrease is not accompanied by an increase in inositol trisphosphate (InsP3) concentration. Also, if [3H]arachidonic acid-labelled cells are exposed to 8 mM-K+, there is no increase in [3H]diacylglycerol production. When [3H]inositol-labelled cells are stimulated by 50 nM-A23187, a small decrease in PtdIns(4,5)P2 is observed. This decrease is not accompanied by an increase in InsP3. The cyclic AMP content of K+-treated cells was approximately twice that in A23187-treated cells. If cells are perifused simultaneously with 50 nM-forskolin and 50 nM-A23187, the initial aldosterone-secretory response is similar to that induced by A23187 alone, and the response is sustained rather than transient, and is similar to that seen during perifusion of cells with 8 mM-K+. This dose of forskolin (50 nM) causes an elevation of cyclic AMP concentration in A23187-treated cells, to a value similar to that in K+-treated cells. These results indicate that, in K+-treated cells, a rise in cyclic AMP content serves as a positive sensitivity modulator of the Ca2+ message, and plays a key role in mediating the sustained aldosterone-secretory response.  相似文献   

4.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

5.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We studied the possibility that hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] may be the initiating event for the increase in [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) during carbachol and pancreozymin (cholecystokinin-octapeptide) action in the rat pancreas. After prelabelling acini for 2h, [32P]Pi incorporation into PtdA, PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P) had reached equilibrium. Subsequent addition of carbachol or pancreozymin caused 32P in PtdIns(4,5)P2 to decrease by 30-50% within 10-15 s, and this was followed by sequential increases in [32P]Pi incorporation into PtdA and PtdIns. Similar changes in 32P-labelling of PtdIns4P were not consistently observed. Confirmation that the decrease in 32P in chromatographically-purified PtdIns(4,5)P2 reflected an actual decrease in this substance was provided by the fact that similar results were obtained (a) when PtdIns(4,5)P2 was prelabelled with [2-3H]inositol, and (b) when PtdIns(4,5)P2 was measured as its specific product (glycerophosphoinositol bisphosphate) after methanolic alkaline hydrolysis and ion-exchange chromatography. The secretogogue-induced breakdown of PtdIns(4,5)P2 was not inhibited by Ca2+ deficiency (severe enough to inhibit amylase secretion and Ca2+-dependent hydrolysis of PtdIns), and ionophore A23187 treatment did not provoke PtdIns(4,5)P2 hydrolysis. The increase in the hydrolysis of PtdIns(4,5)P2 and the increase in [32P]Pi incorporation into PtdA commenced at the same concentration of carbachol in dose-response studies. Our findings suggest that the hydrolysis of PtdIns(4,5)P2 is an early event in the action of pancreatic secretogogues that mobilize Ca2+, and it is possible that this hydrolysis may initiate the Ca2+-independent labelling of PtdA and PtdIns. Ca2+ mobilization may follow these responses, and subsequently cause Ca2+-dependent hydrolysis of PtdIns and exocytosis.  相似文献   

7.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

8.
Thyrotropin-releasing hormone (TRH) stimulates hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) by a phospholipase C (or phosphodiesterase) and elevates cytoplasmic-free Ca2+ concentration ([Ca2+]i) in GH3 pituitary cells. To explore whether hydrolysis of PtdIns-4,5-P2 is secondary to the elevation of [Ca2+]i, we studied the effects of Ca2+ ionophores, A23187 and ionomycin. In cells prelabeled with [3H]myoinositol, A23187 caused a rapid decrease in the levels of [3H]PtdIns-4,5-P2, [3H]PtdIns-4-P, and [3H]PtdIns to 88 +/- 2%, 88 +/- 4%, and 86 +/- 1% of control, respectively, and increased [3H]inositol bisphosphate to 200 +/- 20% at 0.5 min. There was no increase in [3H] Ins-P3; the lack of a measurable increase in [3H]Ins-P3 was not due to its rapid dephosphorylation. In cells prelabeled with [14C]stearic acid, A23187 increased [14C]diacylglycerol and [14C]phosphatidic acid to 166 +/- 20% and 174 +/- 17% of control, respectively. In cells prelabeled with [3H]arachidonic acid, A23187, but not TRH, increased unesterified [3H]arachidonic acid to 166 +/- 8% of control. Similar effects were observed with ionomycin. Hence, Ca2+ ionophores stimulate phosphodiesteratic hydrolysis of PtdIns-4-P but not of PtdIns-4,5-P2 and elevate the level of unesterified arachidonic acid in GH3 cells. These data demonstrate that Ca2+ ionophores affect phosphoinositide metabolism differently than TRH and suggest that TRH stimulation of PtdIns-4,5-P2 hydrolysis is not secondary to the elevation of [Ca2+]i.  相似文献   

9.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

10.
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate.  相似文献   

11.
[3H]Inositol ([3H]Ins) labeling of phosphoinositides was studied in rat brain cortical membranes. [3H]Ins was incorporated into a common lipid pool through both CMP-dependent and independent mechanisms. These are as follows: (1) a reverse reaction catalyzed by phosphatidyl-inositol (PtdIns) synthase, and (2) the reaction performed by the PtdIns headgroup exchange enzyme, respectively. Membrane phosphoinositides prelabeled in either CMP-dependent or independent fashions were hydrolyzed by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)- and carbachol-stimulated phospholipase C. Unlike CMP-dependent labeling, however, CMP-independent incorporation of [3H]Ins into lipids was inhibited by 1 mM (0.04%) sodium deoxycholate. Thus, when PtdIns labeling and phospholipase C stimulation were studied in a concerted fashion, [3H]Ins was incorporated into lipids primarily through the PtdIns synthase-catalyzed reaction because of the presence of deoxycholate required to observe carbachol-stimulation of phospholipase C. Little direct breakdown of [3H]PtdIns was detected because production of myo-[3H]inositol 1-monophosphate was minimal and myo-[3H]inositol 1,4-bisphosphate was the predominant product. Although PtdIns labeling and 3H-polyphosphoinositide formation were unaffected by GTP gamma S and carbachol and had no or little lag period, GTP gamma S- and carbachol-stimulated appearance of 3H-Ins phosphates exhibited an appreciable lag (10 min). Also, flux of label from [3H]Ins to 3H-Ins phosphates was restricted to a narrow range of free calcium concentrations (10-300 nM). These results show the concerted activities of PtdIns synthase, PtdIns 4-kinase, and phospholipase C, and constitute a simple assay for guanine nucleotide-dependent agonist stimulation of phospholipase C in a brain membrane system using [3H]Ins as labeled precursor.  相似文献   

12.
Biphasic effects of 1,25-dihydroxyvitamin D-3 on DNA synthesis were shown in primary cultured (24 h) chick embryo myoblasts exposed to physiological concentrations of the hormone. The sterol stimulated [3H]thymidine incorporation into DNA in proliferating myoblasts, e.g., at early stages of culture prior to cell fusion or in high serum-treated cells. The opposite effects were observed during the subsequent stage of myoblast differentiation in low-serum media. The mitogenic effect of 1,25-dihydroxyvitamin D-3 was correlated with an increase in c-myc mRNA and a decrease in c-fos mRNA levels, whereas its inhibitory action on DNA synthesis was accompanied by increased myofibrillar and microsomal protein synthesis and an elevation of creatine kinase activity, the latter suggesting a stimulation of muscle cell differentiation by the sterol. These data are in agreement with the results of previous morphological studies. Treatment of myoblasts with the calcium ionophore X-537 A or the phorbol ester TPA caused only a transient stimulation of [3H]thymidine incorporation into DNA, which occurred earlier than the response elicited by 1,25-dihydroxyvitamin D-3, suggesting that changes in intracellular Ca2+ and kinase C activity are not major mediators of the hormone effects. A similar temporal profile of changes in calmodulin mRNA levels as that of [3H]thymidine incorporation into DNA was observed after treatment of myoblasts with the sterol, in accordance with the role of calmodulin in the regulation of cell proliferation. 1,25-dihydroxyvitamin D-3 may play a function in embryonic muscle growth and differentiation.  相似文献   

13.
To clarify the signal transduction mechanism of the erbB gene (virus oncogene) products leading to cell growth and transformation, the alteration of signal transduction induced by enhanced inositol phospholipid metabolism was studied in chick embryo fibroblast cells (CEF cells) transformed by gag-fused erbB gene-carrying virus (GEV cells). The incorporations of 32P into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate were markedly increased in GEV cells. In GEV cells, the activities of lipid kinases such as phosphatidylinositol (PI), PIP, and diacylglycerol (DG) kinases were also increased. The activities of other important enzymes involved in inositol phospholipid metabolism, such as CDP-DG:myo-inositol transferase and phospholipase C, were not changed in GEV cells. Increased inositol phospholipid metabolism might lead to the production of second messengers, such as 1,2-DG and inositol 1,4,5-trisphosphate. Indeed, the 1,2-DG content was also increased in GEV cells. Moreover, the activity of protein kinase C (the Ca2+/phospholipid-dependent enzyme), which should be stimulated by 1,2-DG, was elevated in GEV cells; the protein kinase C activity in the membrane fraction of GEV cells was especially high. When CEF cells were treated with tetradecanoylphorbol acetate, protein kinase C activator, plus Ca2+ ionophore, [3H]thymidine incorporation was markedly stimulated, and maximal stimulation was observed with 1 nM Ca2+ ionophore A23187 plus 100 nM TPA. On the other hand, when GEV cells were treated with TPA plus Ca2+ ionophore A23187, [3H]thymidine incorporation was consistently inhibited. Next, studies were made to determine whether the erbB gene product itself had kinase activity on PI, PIP, and DG after membranes were mildly solubilized with Triton X-100 to prevent inactivation of these kinases. Immunoprecipitates of a GEV cell lysate with antisera that reacted with the erbB gene product had PI kinase activity, whereas no activity was detected in those of lysates of uninfected CEF cells. However, the activity was very weak compared with the total cellular activity. No difference in the PIP and DG kinase activities of immunoprecipitates of cell lysates of uninfected CEF cells and GEV cells was observed. These results suggest that the erbB gene product enhances inositol phospholipid metabolism and subsequent signal transduction, but that the erbB gene product is not involved directly in lipid kinases, although it is closely associated with lipid kinase.  相似文献   

14.
Antigen-mediated exocytosis in intact rat basophilic leukemia (RBL-2H3) cells is associated with substantial hydrolysis of membrane inositol phospholipids and an elevation in concentration of cytosol Ca2+ ([ Ca2+i]). Paradoxically, these two responses are largely dependent on external Ca2+. We report here that cells labeled with myo-[3H]inositol and permeabilized with streptolysin O do release [3H]inositol 1,4,5-trisphosphate upon stimulation with antigen or guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) at low (less than 100 nM) concentrations of free Ca2+. The response, however, is amplified by increasing free Ca2+ to 1 microM. The subsequent conversion of the trisphosphate to inositol 1,3,4,5-tetrakisphosphate is enhanced also by the increase in free Ca2+. Although [3H]inositol 1,4,5-trisphosphate accumulates in greater amounts than is the case in intact cells, [3H]inositol 1,4-bisphosphate is still the major product in permeabilized cells even when the further metabolism of [3H]inositol 1,4,5-trisphosphate is suppressed (by 77%) by the addition of excess (1000 microM) unlabeled inositol 1,4,5-trisphosphate and the phosphatase inhibitor 2,3-bisphosphoglycerate. It would appear that either the activity of the membrane 5-phosphomonoesterase allows virtually instantaneous dephosphorylation of the inositol 1,4,5-trisphosphate under all conditions tested or both phosphatidylinositol 4-monophosphate and the 4,5-bisphosphate are substrates for the activated phospholipase C. The latter alternative is supported by the finding that permeabilized cells, which respond much more vigorously to high (supraoptimal) concentrations of antigen than do intact RBL-2H3 cells, produce substantial amounts of [3H]inositol 1,4-bisphosphate before any detectable increase in levels of [3H]inositol 1,4,5-trisphosphate.  相似文献   

15.
Prolactin (PRL)-stimulated ornithine decarboxylase (ODC) activity and subsequent proliferation are inhibited by the cyclopeptides cyclosporine (CsA) and didemnin B (DB) in Nb 2 node lymphoma cells. Similar concentrations of these agents also inhibit 125I-PRL binding, suggesting that their inhibitory effects on these PRL-dependent physiologic responses are mediated at least in part at the level of PRL receptor interactions. The phorbol ester TPA stimulated ODC activity and [3H]thymidine incorporation to 54% and 31% that of a near-optimal mitogenic concentration of PRL (10 ng/ml), suggesting that mitogenesis in these cells is coupled to some degree to the activation of protein kinase C (PKC). The calcium ionophore A23187 increased ODC activity only slightly and actually decreased [3H]thymidine incorporation to a value below the "cells only" controls. The addition of TPA plus A23187 did not further enhance the effects of TPA to elevate ODC activity and [3H]thymidine incorporation. However, A23187 significantly elevated PRL-stimulated ODC activity with a subsequent inhibition of [3H]thymidine incorporation, suggesting a block of entry into S phase. Both cyclopeptides decreased the elevation of ODC activity in G1 phase of cell cycle in response to PRL, suggestive of a site of action for these agents in early G1, a conclusion compatible with their ability to inhibit PRL binding to these cells. Addition of CsA or DB 2 hr after PRL had no effect on PRL-stimulated ODC activity detectable at 6 hr, but addition of either as late as 6 hr still affected the extent of mitogenesis. This is in line with the requirement for PRL to be present in the culture medium for a minimum of 3 to 6 hr to invoke a maximal effect on mitogenesis. Addition of either cyclopeptide after the cells were in S phase had no effect on the extent of [3H]thymidine incorporation. An inhibitor of the cyclooxygenase pathway (indomethacin) enhanced both PRL-stimulated ODC activity and proliferation, whereas inhibition of the lipoxygenase pathway by NDGA attenuated only proliferation, suggesting that in Nb 2 cells, products of the lipoxygenase pathway may contribute to the mechanism of PRL-stimulated mitogenesis. Because Nb 2 lymphoma cells were derived from estrogenized rats, estrogen was tested as a mitogen. By itself it was not mitogenic, but in conjunction with PRL, estradiol-17 beta elevated the ODC response and inhibited proliferation. Inhibitors of PKC known to have minimal effects on RNA synthesis, quercetin and gossypol, totally inhibited both the elevations of ODC activity and [3H]thymidine incorporation in response to PRL in Nb 2 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
3H]Inositol incorporation into phosphoinositides of pig reticulocytes   总被引:1,自引:0,他引:1  
Phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) of pig reticulocytes were extensively labelled when these cells were incubated with [3H]inositol. In marked contrast, a total lack of [3H]inositol labelling of phosphoinositides was observed in mature erythrocytes. Phosphoinositides of both reticulocytes and mature erythrocytes were labelled with 32P but the labelling in reticulocytes was several-fold higher than in mature erythrocytes. Inclusion of Ca2+ (2 mM)+ ionophore A23187 (2 micrograms/ml) during the labelling experiments substantially reduced the radioactivity incorporation into phosphoinositides of reticulocytes. When [3H]inositol-prelabelled reticulocytes were treated with Ca2+ + A23187 the levels of radioactive PI and PIP2 did not change significantly. However, the PIP pool exhibited a remarkable sensitivity to Ca2+ as shown by a 75% increase in its radioactivity over the control. The ability to incorporate [3H]inositol into phosphoinositides remains transitorily intact in the reticulocyte stage. Thus, pig reticulocytes offer a suitable model in which to explore the physiological role of phosphoinositides in relation to cellular maturation process.  相似文献   

17.
We studied the effects of platelet-activating factor (PAF-acether) on phospholipase activity in renal epithelial cells. When platelet-activating factor was added to renal cells prelabeled with [3H]arachidonic acid, it induced the rapid hydrolysis of phospholipids. Up to 26% of incorporated [3H]arachidonic acid was released into the medium from renal cells. After the addition of PAF-acether, the degradation of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were observed. The amount of [3H]arachidonic acid released were comparable to the losses of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. In renal cells biosynthetically labeled by incorporation of [3H]choline into cellular phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, the range of concentrations of PAF-acether-induced hydrolysis of labeled phosphatidylcholine were approximately equal to the amounts of lysophosphatidylcholine produced. We also observed a transient rise of diacylglycerol after the addition of platelet-activating factor to these cells. To test for action of phospholipase C, the accumulations of [3H]choline, [3H]inositol and [3H]ethanolamine were determined. The radioactivities in choline and ethanolamine showed little or no change. An increase in inositol was detectable within 1 min and it peaked at 3 min. These results indicate that platelet-activating factor stimulates phospholipase A2 and phosphatidylinositol-specific phospholipase C activity in renal epithelial cells. These phospholipase activities were Ca2+ dependent. Moreover, PAF-acether enhanced changes in cell-associated Ca2+. These results suggest that the increased Ca2+ permeability of cell membrane stimulates phospholipases A2 and C in renal epithelial cells. Prostaglandin biosynthesis was also enhanced in these cells by platelet-activating factor.  相似文献   

18.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

19.
The procedures for lymphocyte activation and for removing the cells from the radioactive loading solution in incubation medium were modified to routinely obtain significant and reproducible 45Ca2+ uptakes in mitogen-induced mouse T and B lymphocytes. Factors such as mouse strain, lymphocyte origin, and media pH were not critical to the 45Ca2+ uptake measurements. In contrast, factors such as lymphocyte cell concentration during mitogenic activation, filtering the 45Ca2+:3H2O mixtures, and the nature and purity of the B-cell mitogens were critical for obtaining maximal and reproducible 45Ca2+ uptakes. Centrifugation through silicone oil into sucrose was an efficient and rapid procedure for separating the cells from the radioactive loading solution in the incubation medium. Using optimal conditions, an approximate twofold increase in 45Ca2+ uptake (representing an influx of approximately 97 amol per lymphocyte and an increase in average cellular Ca2+ of approximately 0.72 mM) was routinely obtained with purified mouse lymphocytes activated with a variety of T- and B-cell mitogens (using concentrations resulting in maximal [3H]thymidine incorporation). A larger 45Ca2+ uptake was routinely obtained with mitogenic concentrations of A23187, a divalent cation ionophore stimulating T cells. Experiments employing [14C]sucrose and [14C]inulin with control and mitogen-induced lymphocytes showed that the trapped extracellular fluid measurements in the cell pellets should be used to correct the magnitude of the 45Ca2+ uptake measurements.  相似文献   

20.
Insulin-stimulated phosphoinositide metabolism in isolated fat cells   总被引:6,自引:0,他引:6  
Treatment of isolated fat cells with insulin produced increases of up to 4.8-fold in the incorporation of [3H]inositol into phosphatidylinositol. This effect of insulin was both time- and dose-dependent with half-maximal stimulation at 30 microunits/ml of insulin. Insulin increased the labeling of phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate but not phosphatidylinositol 4-monophosphate in cells which had been preincubated with [3H]inositol for 90 min. Incubation of the cells in a Ca2+-free buffer increased the basal level of phosphatidylinositol labeling and enhanced the effect of insulin. Glucagon and isoprenaline, both of which stimulate lipolysis, had no effect on phosphatidylinositol labeling but did potentiate insulin-stimulated incorporation of [3H]inositol into phosphatidylinositol. Phosphoinositide breakdown was measured by the accumulation of inositol phosphates. Insulin did not increase the level of the inositol phosphates at all concentrations of the hormone tested. By comparison, phenylephrine and vasopressin were able to stimulate phosphoinositide breakdown. Pretreatment of the cells with insulin enhanced the effect of phenylephrine on inositol phosphates' accumulation, suggesting that insulin may potentiate phenylephrine-mediated phosphoinositide turnover. From these data we conclude that insulin stimulates the de novo synthesis of phosphatidylinositol and phosphatidylinositol 4,5-biphosphate, but has no effect on phosphoinositide breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号