首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
James CL  Viola RE 《Biochemistry》2002,41(11):3720-3725
The bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli catalyzes non-consecutive reactions in the aspartate pathway of amino acid biosynthesis. Both catalytic activities are subject to allosteric regulation by the end product amino acid L-threonine. To examine the kinetics and regulation of the enzymes in this pathway, each of these catalytic domains were separately expressed and purified. The separated catalytic domains remain active, with each of their catalytic activities enhanced in comparison to the native enzyme. The allosteric regulation of the kinase activity is lost, and regulation of the dehydrogenase activity is dramatically decreased in these separate domains. To create a new bifunctional enzyme that can catalyze consecutive metabolic reactions, the aspartokinase I domain was fused to the enzyme that catalyzes the intervening reaction in the pathway, aspartate semialdehyde dehydrogenase. A hybrid bifunctional enzyme was also created between the native monofunctional aspartokinase III, an allosteric enzyme regulated by lysine, and the catalytic domain of homoserine dehydrogenase I with its regulatory interface domain still attached. In this hybrid the kinase activity remains sensitive to lysine, while the dehydrogenase activity is now regulated by both threonine and lysine. The dehydrogenase domain is less thermally stable than the kinase domain and becomes further destabilized upon removal of the regulatory domain. The more stable aspartokinase III is further stabilized against thermal denaturation in the hybrid bifunctional enzyme and was found to retain some catalytic activity even at temperatures approaching 100 degrees C.  相似文献   

2.
Substrate channeling is the process in which the intermediate produced by one enzyme is transferred to the next enzyme without complete mixing with the bulk phase. This process is equivalent to a microcompartmentation of the intermediate, although classic diffusion occurs simultaneously to varying extents in many of these cases. This microcompartmentation and other factors of channeling provide many potential biological advantages. Extensive examples of channeling can be found in the cited reviews. The choice of methods to detect and characterize substrate channeling depends extensively on the type of enzyme associations involved, the constants of the system, and, to some extent, the mechanism of channeling. Thus it is important to distinguish stable, dynamic, and catalytically induced enzyme associations as well as recognize different mechanisms of substrate channeling. We discuss the principles, experimental details, and limitations and precautions of five rather general methods. These use measurements of transient times, isotope dilution or enhancement, competing reaction effects, enzyme buffering kinetics, and transient-state kinetics. These encompass methods applicable to studies in vitro, in situ, and in vivo. None of these methods is applicable to all systems. They are also susceptible to artifacts without proper attention to precautions. Transient-state kinetic methods clearly excel in elucidating molecular mechanisms of channeling. However, they are often not the best method for initial detection and characterization of the process and they are not applicable to many complex systems. Several other methods that have been successful in indicating substrate channeling are briefly described.  相似文献   

3.
4.
The present work reports direct evidence for the channeling of carbamylphosphate from carbamylphosphate synthetase to aspartate transcarbamylase in the multifunctional protein that catalyzes the two first reactions of the pyrimidine pathway in Saccharomyces cerevisiae. This phenomenon is almost certainly related to the previously reported observation that the apparent in situ catalytic mechanism of aspartate transcarbamylase is altered by the association of this enzyme to carbamylphosphate synthetase. As a prerequisite of this investigation, the in situ catalytic and regulatory properties of carbamylphosphate synthetase were studied in the permeabilized cells of a strain that contains the wild-type multifunctional protein but is devoid of the carbamylphosphate synthetase specific for the arginine pathway.  相似文献   

5.
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP–ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.  相似文献   

6.
In plant, the first and the third steps of the synthesis of methionine and threonine are catalyzed by a bifunctional enzyme, aspartate kinase-homoserine dehydrogenase (AK-HSDH). In this study, we report the first purification and characterization of a highly active threonine-sensitive AK-HSDH from plants (Arabidopsis thaliana). The specific activities corresponding to the forward reaction of AK and reverse reaction of HSDH of AK-HSDH were 5.4 micromol of aspartyl phosphate produced min(-1) mg(-1) of protein and 18.8 micromol of NADPH formed min(-1) mg(-1) of protein, respectively. These values are 200-fold higher than those reported previously for partially purified plant enzymes. AK-HSDH exhibited hyperbolic kinetics for aspartate, ATP, homoserine, and NADP with K(M) values of 11.6 mM, 5.5 mM, 5.2 mM, and 166 microM, respectively. Threonine was found to inhibit both AK and HSDH activities by decreasing the affinity of the enzyme for its substrates and cofactors. In the absence of threonine, AK-HSDH behaved as an oligomer of 470 kDa. Addition of the effector converted the enzyme into a tetrameric form of 320 kDa.  相似文献   

7.
The ability of aspartate transcarbamylase from Escherichia coli to catalyze carbamylation of amino acids other than the natural substrate, L-aspartate, was examined. Cysteine, cysteate, cysteinesulfinate, and 3-nitroalanine showed kcat values at pH 7 of 0.16, 0.58, 5.2, and 62 s-1, respectively, while kcat with aspartate was 320 s-1. In a parallel study, competitive inhibition constants of 3-nitropropionate, 3-mercaptopropionate, 3-sulfopropionate, and 3-sulfinopropionate were found to be high, about 0.1 M, compared with that of succinate, 0.56 mM. Although cysteinesulfinate had low activity as a substrate, the pH dependences of kcat and kcat/Km in H2O and D2O observed with the compound closely paralleled those of aspartate. The results of these studies suggest that substrate specificity and reactivity are achieved in part by a strong, highly specific interaction of one or more active site residues with the beta-carboxylate of L-aspartate. Unlike the sigmoidal kinetics found with aspartate, saturation of native aspartate transcarbamylase by cysteine sulfinate showed a lack of cooperativity, even under conditions of activation of the reaction by ATP and inhibition by CTP. The cysteinesulfinate reaction was increased 9-fold by the bisubstrate analog N-phosphonacetyl-L-aspartate. These results were interpreted in terms of an inability of cysteinesulfinate to cause the allosteric conformational change promoted by aspartate.  相似文献   

8.
It has been hypothesized that the bifunctional enzyme DmpFG channels its intermediate, acetaldehyde, from one active site to the next using a buried intermolecular channel identified in the crystal structure. This channel appears to switch between an open and a closed conformation depending on whether the coenzyme NAD+ is present or absent. Here, we applied molecular dynamics and metadynamics to investigate channeling within DmpFG in both the presence and absence of NAD+. We found that substrate channeling within this enzyme is energetically feasible in the presence of NAD+ but was less likely in its absence. Tyr-291, a proposed control point at the channel's entry, does not appear to function as a molecular gate. Instead, it is thought to orientate the substrate 4-hydroxy-2-ketovalerate in DmpG before reaction occurs, and may function as a proton shuttle for the DmpG reaction. Three hydrophobic residues at the channel's exit appear to have an important role in controlling the entry of acetaldehyde into the DmpF active site.  相似文献   

9.
A permeabilization procedure was adapted to allow the in situ determination of aspartate transcarbamylase activity in Saccharomyces cerevisiae. Permeabilization is obtained by treating cell suspensions with small amounts of 10% toluene in absolute ethanol. After washing, the cells can be used directly in the enzyme assays. Kinetic studies of aspartate transcarbamylase (EC 2.1.3.2) in such permeabilized cells showed that apparent Km for substrates and Ki for the feedback inhibitor UTP were only slightly different from those reported using partially purified enzyme. The aspartate saturation curve is hyperbolic both in the presence and absence of UTP. The inhibition by this nucleotide is noncompetitive with respect to aspartate, decreasing both the affinity for this substrate and the maximal velocity of the reaction. The saturation curves for both substrates give parallel double reciprocal plots. The inhibition by the products is linear noncompetitive. Succinate, an aspartate analog, provokes competitive and uncompetitive inhibitions toward aspartate and carbamyl phosphate, respectively. The inhibition by phosphonacetate, a carbamyl phosphate analog, is uncompetitive and noncompetitive toward carbamyl phosphate and aspartate, respectively, but pyrophosphate inhibition is competitive toward carbamyl phosphate and noncompetitive toward aspartate. These results, as well as the effect of the transition state analog N-phosphonacetyl-L-aspartate, all exclude a random mechanism for aspartate transcarbamylase. Most of the data suggest an ordered mechanism except the substrates saturation curves, which are indicative of a ping-pong mechanism. Such a discrepancy might be related to some channeling of carbamyl phosphate between carbamyl phosphate synthetase and aspartate transcarbamylase catalytic sites.  相似文献   

10.
L-Aspartate 4-decarboxylase (Asd) is a major enzyme used in the industrial production of L-alanine. Its gene was cloned from Pseudomonas sp. ATCC 19121 and characterized in the present study. The 1,593-bp asd encodes a protein with a molecular mass of 59,243 Da. The Asd from this Pseudomonas strain was considerably homologous to other Asds and aminotransferases, and has evolved independently of these enzymes from gram-positive microbes. Productivity rate of the C-terminal His-tagged fusion Asd was at 33 mg/l of Escherichia coli transformant culture. The kinetic parameters K (m) and V (max) of the fusion protein were 11.50 mM and 0.11 mM/min, respectively. Gel filtration analysis demonstrated that Asd is a dodecamer at pH 5.0 while 4.4 % of the recombinant protein dissociated into dimer when the pH was increased to 7.0. Asd exhibited its maximum activity at pH 5.0 and specific activity of 280 U/mg, and remained stable over a broad range of pH. The optimum temperature for Asd reaction was 45 degrees C, and 92 % of the activity remained when the enzyme was incubated at 40 degrees C for 40 min. This enzyme did not have any preferred divalent cation for catalysis. The recombinant Asd also exhibited aminotransferase activity when D,L-Asp, L-Glu, L-Gln, and L-Ala were utilized as substrates. However, the decarboxylation activity of L-aspartate was 2,477 times higher than its aminotransferase activity. The present study is the first investigation on the important biochemical properties of the purified recombinant Asd.  相似文献   

11.
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme–enzyme or enzyme–cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).  相似文献   

12.
The five enzymes responsible for the conversion of L-aspartate to L-threonine in Escherichia coli were purified to homogeneity and subsequently reconstituted in vitro in ratios approximating those found in vivo. 31P NMR was used to conveniently monitor the rates of consumption of the substrates ATP and NADPH, the accumulation of the intermediates beta-aspartyl phosphate and homoserine phosphate, and the formation of the products ADP, NADP+, and Pi in a single experiment. By this method, the flux of aspartic acid through the enzymes of the pathway was monitored in the absence and in the presence of several alternative substrates and inhibitors. Several known antimetabolites were found to be alternative substrates that ultimately became inhibitors of pathway flux. L-threo-3-Hydroxyaspartic acid was converted to 3-hydroxyhomoserine phosphate by the first four enzymes of the pathway. The antimetabolite L-threo-3-hydroxyhomoserine was found to bind to and inhibit aspartokinase-homoserine dehydrogenase I in a cooperative fashion (I 0.5 = 3 mM, nH = 2.5), similar to the action of the allosteric end product inhibitor L-threonine (I 0.5 = 0.36 mM, nH = 2.4). In the presence of the remaining enzymes of the pathway, however, L-threo-3-hydroxyhomoserine was phosphorylated to the apparent ultimate antimetabolite L-threo-3-hydroxyhomoserine phosphate that was a potent inhibitor of threonine synthase and consequently of L-threonine biosynthesis. When aspartic acid alone was examined as a substrate of the enzymes of the pathway, no accumulation of the beta-aspartyl phosphate and homoserine phosphate intermediates was observed. However, in the presence of either 5 mM L-threo-3-hydroxyhomoserine or 5 mM L-threo-3-hydroxyhomoserine phosphate, homoserine phosphate was found to accumulate. In contrast to the homoserine phosphate and 3-hydroxyhomoserine phosphate intermediates, both of which were very stable, the acylphosphate intermediates beta-aspartyl phosphate and beta-3-hydroxyaspartyl phosphate were highly susceptible to hydrolysis, with first-order rate constants of 4.6 X 10(-3) min-1 and 4.5 X 10(-2) min-1 (pH 7.8, 25 degrees C), respectively.  相似文献   

13.
14.
《Plant science》1986,43(1):45-50
Excised barley embryos were grown in the presence of 1 mM lysine, threonine, methionine and isoleucine, alone and in combinations. Growth was similar in all treatments except lysine plus threonine, where growth was severely inhibited. Activities of four regulatory biosynthetic enzymes were measured and expressed on a protein or fresh weight basis to assess possible repression/derepression under these conditions. Aspartate kinase (EC 2.7.2.4) (AK) activity and sensitivity to feedback regulators did not vary greatly between treatments. The activity and feedback sensitivity of homoserine dehydrogenase (EC 1.1.1.3) (HSDH) also showed little variation. Cystathionine synthase (EC 4.2.99.x) (CS) activity was markedly reduced in plants grown in the presence of methionine, and increased nearly 4-fold in the presence of lysine plus threonine, a condition in which methionine is limiting. Activity increased to a lesser extent in plants grown in the presence of threonine alone. Threonine synthase (EC 4.2.99.2) (TS) activity in the seedlings was reduced by up to one half in the presence of methionine, and to a smaller degree in the presence of isoleucine. None of the treatments led to increased activity of this enzyme.  相似文献   

15.
Excess alpha-ketobutyrate inhibited the growth of Salmonella typhimurium LT2 by inhibiting the acetohydroxy acid synthase-catalyzed synthesis of alpha-acetolactate (a valine precursor). As a result, cells were starved for valine, and both ilvB (encoding acetohydroxy acid synthase I) and ilvGEDA (ilvG encodes acetohydroxy acid synthase II) were derepressed. The addition of valine reversed the effects of alpha-ketobutyrate.  相似文献   

16.
The conversion of 2-C-methyl-d-erythritol 4-phosphate (MEP) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution, raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE(D152A) mutant in the presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site of the IspF module of IspDF.  相似文献   

17.
We report here the purification and characterization of phosphomannose isomerase-guanosine 5'-diphospho-D-mannose pyrophosphorylase, a bifunctional enzyme (PMI-GMP) which catalyzes both the phosphomannose isomerase (PMI) and guanosine 5'-diphospho-D-mannose pyrophosphorylase (GMP) reactions of the Pseudomonas aeruginosa alginate biosynthetic pathway. The PMI and GMP activities co-eluted in the same protein peak through successive fractionation on hydrophobic interaction, ion exchange, and gel filtration chromatography. The purified enzyme migrated as a 56,000 molecular weight protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native protein migrated as a monomer of 54,000 molecular weight upon gel filtration chromatography. The apparent Km for D-mannose 6-phosphate was 3.03 mM, and the Vmax was 830 nmol/min/mg of enzyme. For the GMP forward reaction, apparent Km values of 20.5 microM and 29.5 microM for D-mannose 1-phosphate and GTP, respectively, were obtained from double reciprocal plots. The GMP forward reaction Vmax (5,680 nmol/min/mg of enzyme) was comparable to the reverse reaction Vmax (5,170 nmol/min/mg of enzyme), and the apparent Km for GDP-D-mannose was determined to be 14.2 microM. Both reactions required Mg2+ activation, but the PMI reaction rate was 4-fold higher with Co2+ as the activator. PMI (but not GMP) activity was sensitive to dithiothreitol, indicating the involvement of disulfide bonds to form a protein structure capable of PMI activity. DNA sequencing of a cloned mutant algA gene from P. aeruginosa revealed that a point mutation at nucleotide 961 greatly decreased the levels of both PMI and GMP in a crude extract.  相似文献   

18.
The enzymes aspartokinase and homoserine dehydrogenase catalyze the reaction at key branching points in the aspartate pathway of amino acid biosynthesis. Enterococcus faecium has been found to contain two distinct aspartokinases and a single homoserine dehydrogenase. Aspartokinase isozymes eluted on gel filtration chromatography at molecular weights greater than 250,000 and about 125,000. The molecular weight of homoserine dehydrogenase was determined to be 220,000. One aspartokinase isozyme was slightly inhibited by meso-diaminopimelic acid. Another aspartokinase was repressed and inhibited by lysine. Although the level of diaminopimelate-sensitive (DAPs) enzyme was not much affected by growth conditions, the activity of lysine-sensitive (Lyss) aspartokinase disappeared rapidly during the stationary phase and was depressed in rich media. The synthesis of homoserine dehydrogenase was controlled by threonine and methionine. Threonine also inhibited the specific activity of this enzyme. The regulatory properties of aspartokinase isozymes and homoserine dehydrogenase from E. faecium are discussed and compared with those from Bacillus subtilis.  相似文献   

19.
The symmetry of proteins composed of identical polypeptide chains has been investigated by means of cross-linking with bifunctional reagents and subsequent sodium dodecylsulfate-polyacrylamide gel electrophoresis. The majority of the investigations were performed with diimidates of different chain lengths (C3-C12), which react exclusively with amino groups. Aldolase, catalase, fumarase, pyruvate kinase, tetrameric proteins with identical polypeptide chains, reveal a D2 symmetry, i.e. they appear to be composed of two pairs of polypeptide chains. The validity of this conclusion is demonstrated with lactate dehydrogenase. This enzyme, shown by X-ray analysis to have a D2 symmetry, yields after cross-linking and subsequent polyacrylamide electrophoresis the band pattern expected for a protein with this quaternary structure and similar to the pattern obtained with the above enzymes. 2. The influence of the experimental conditions on the cross-linking reaction has been investigated. The selectivity of the bifunctional reagent for the different contact domains within the quaternary structure of a protein depends on the reaction time, the chain length and on the concentration of the reagent. In general the D2 symmetry becomes more obvious with increasing chain length and with increasing concentration of the diimidate. Diethylpyrocarbonate showed very little selectivity.  相似文献   

20.
Preparation and purification of substrate amounts of radioactive as well as non-radioactive dolichyl diphosphate N-acetylglucosamine and dolichyl diphosphate chitobiose made it possible to test and characterize tentatively the first three reactions of the dolichol pathway (enzyme I-III). The test conditions are described in detail. All three enzymes were solubilized from yeast membranes with detergents. Enzyme II and III were purified to give a purification factor of 35-fold and 70-fold, respectively. The reactions required divalent metal ions with an optimum concentration of 10 mM Mg2+. Enzyme II was stimulated almost to the same extent also by Ca2+. The Km values for UDP-N-acetylglucosamine for enzyme I and II were 15 and 10 muM, respectively, and for GDP-mannose (enzyme III) 7 muM. The apparent Km values for the lipophilic acceptor was 180 muM for enzyme I (dolichyl phosphate), 40 muM for enzyme II (dolichyl diphosphate N-acetylglucosamine) and 17 muM for enzyme III (dolichyl diphosphate chitobiose). The corresponding V values were approximately 1, 10, and 50 nmol X h-1 X mg protein-1. All reactions were inhibited by nucleoside diphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号