首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.  相似文献   

2.
3.
The ligninolytic fungus Irpex lacteus was shown as an efficient degrader of oligocyclic aromatic hydrocarbons (PAHs; 'polycyclic aromatic hydrocarbons') possessing 3-6 aromatic rings in complex liquid media. The strain produced mainly Mn-dependent peroxidase in media without pollutants. Activity of ligninolytic enzymes was higher in a N-limited medium. However, after contamination with PAHs (especially pyrene) the values increased and significant activity of Mn-independent peroxidase appeared in the complex medium. Other factors (such as the increase in nitrogen concentration or the presence of solvent(s) for dissolution of PAHs) had no effect. Cytochrome P-450 was detected in the microsomal fraction of biomass grown in the complex medium. The rate of PAH degradation was also affected by the presence of various combinations of PAHs. However, independently of the enzyme activities, anthracene was shown to have a positive influence on degradation of pyrene and fluoranthene.  相似文献   

4.
Yan J  Wang L  Fu PP  Yu H 《Mutation research》2004,557(1):99-108
The photomutagenicity of 16 polycyclic aromatic hydrocarbons (PAHs), all on the United States Environmental Protection Agency (US EPA) priority pollutant list, was studied. Concomitant exposing the Salmonella typhimurium bacteria strain TA102 to one of the PAHs and light (1.1 J/cm2 UVA+2.1 J/cm2 visible) without the activation enzyme S9, strong photomutagenic response is observed for anthracene, benz[a]anthracene, benzo[ghi]perylene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and pyrene. Under the same conditions, acenaphthene, acenaphthylene, benzo[k]fluoranthene, chrysene, and fluorene are weakly photomutagenic. Benzo[b]fluoranthene, fluoranthene, naphthalene, phenanthrene, and dibenz[a,h]anthracene are not photomutagenic. These results indicate that PAHs can be activated by light and become mutagenic in Salmonella TA102 bacteria. At the same time, the mutagenicity for all the 16 PAHs was examined with the standard mutagenicity test with 10% S9 as the activation system. Benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, acenaphthylene, and fluorene are weakly mutagenic, while the rest of the PAHs are not. In general, the photomutagenicity of PAHs in TA102 does not correlate with their S9-activated mutagenicity in either TA102 or TA98/TA100 since they involve different activation mechanisms.  相似文献   

5.
[背景] 真菌和细菌被认为在多环芳烃污染土壤生物修复过程中发挥协同作用,目前在真实土壤体系中开展真菌-细菌协同降解研究较少。[目的] 研究真菌和细菌对不同种类多环芳烃降解的差异及对蒽和苯并[a]蒽的生物强化与协同作用。[方法] 选用多环芳烃降解真菌和细菌各一株,在液体纯培养体系下分析它们对不同种类多环芳烃降解的差异,在土壤体系中采用放射性同位素示踪技术研究2种微生物对蒽和苯并[a]蒽的生物强化与协同作用。[结果] 供试细菌鞘脂菌NS7能够很好地降解低环种类多环芳烃,以蒽作为唯一碳源时可以将其完全降解,在复合污染条件下对菲、蒽、荧蒽、芘等降解效果突出(>90%),对苯并[a]芘降解效果较差(9.76%)。相比而言,供试真菌糙皮侧耳菌对苯并[a]芘具有更好的降解效果(21.18%),对低环多环芳烃降解效果明显不如降解菌NS7。在自然土壤中,蒽和苯并[a]蒽具有明显不同的矿化效率,分别为18.61%和4.28%,在蒽污染土壤中加入鞘脂菌NS7并未显著提高蒽的矿化率(P>0.05),相比而言,苯并[a]蒽污染土壤中加入糙皮侧耳显著提高了污染物矿化效率(2.24倍),表明真菌和细菌在土壤环境中的定殖存活能力可能影响了生物强化效果。采用灭菌土壤排除土著微生物的竞争排斥作用,研究了真菌菌丝对生物强化降解的影响,发现在蒽污染土壤中,真菌菌丝的迁移作用显著提高了细菌鞘脂菌NS7对污染物的矿化率,从1.75%提高到5.91%;而在苯并[a]蒽灭菌污染土壤中,接种糙皮侧耳却没有发现苯并[a]蒽矿化率提高的现象,表明自然土壤中真菌强化降解苯并[a]蒽的作用可能是源于真菌菌丝促进污染物和土著降解菌的接触,而非直接来自真菌本身。[结论] 细菌能够很好地降解低环种类多环芳烃,而真菌对高环种类多环芳烃降解效果较好。真菌可能通过菌丝促进土著微生物在土壤中的迁移,增大多环芳烃和土著降解菌的接触,从而促进了多环芳烃降解。研究加深了对多环芳烃污染土壤生物强化修复的认识,对发展基于真菌-细菌协同作用的生物强化与调控技术提供理论指导。  相似文献   

6.
This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10, 201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO(2) by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization (53% of added [(14)C]benzo[a]pyrene was recovered as (14)CO(2) in 100 days), and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula.  相似文献   

7.
《Process Biochemistry》2014,49(10):1723-1732
The removal and transformation of seven high molecular weight polycyclic aromatic hydrocarbons (PAHs), namely benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene, by a freshwater microalga Selenastrum capricornutum under gold and white light irradiation was studied. The two light sources did not result in significant differences in the biodegradation of the selected PAHs in live algal cells, but white light was more effective in promoting photodegradation than was gold light in dead cells. The removal efficiency of seven PAHs, as well as the difference between live and dead microalgal cells, was PAH compound-dependent. Benz[a]anthracene and benzo[a]pyrene were highly transformed in live and dead algal cells, and dead cells displayed greater transformation levels than live cells. Further investigation comparing the transformation of single PAH compound, benzo[a]pyrene, by S. capricornutum and another green microalgal species, Chlorella sp., demonstrated that the transformation in dead cells was similar, indicating the process was algal-species independent. Dead algal cells most likely acted as a photosensitizer and accelerated the photodegradation of PAHs.  相似文献   

8.
Activation of aryl hydrocarbon receptor (AhR) by 30 polycyclic aromatic hydrocarbons (PAHs) was determined in the chemical-activated luciferase expression (CALUX) assay, using two exposure times (6 and 24h), in order to reflect the metabolization of PAHs. AhR-inducing potencies of PAHs were expressed as induction equivalency factors (IEFs) relative to benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In 24h exposure assay, the highest IEFs were found for benzo[k]fluoranthene, dibenzo[a,h]anthracene and dibenzo[a,k]fluoranthene (approximately three orders of magnitude lower than TCDD) followed by dibenzo[a,j]anthracene, benzo[j]fluoranthene, indeno[1,2,3-cd]pyrene, and naphtho[2,3-a]pyrene. The 6h exposure to PAHs led to a significantly higher AhR-mediated activity than the 24h exposure (generally by two orders of magnitude), probably due to the high rate of PAH metabolism. The strongest AhR inducers showed IEFs approaching that of TCDD. Several PAHs, including some strong mutagens, such as dibenzo[a,l]pyrene, cyclopenta[cd]pyrene, and benzo[a]perylene, elicited only partial agonist activity. Calculation of IEFs based on EC25 values and/or 6h exposure data is suggested as an alternative approach to estimation of toxic potencies of PAHs with high metabolic rates and/or the weak AhR agonists. The IEFs, together with the recently reported relative mutagenic potencies of PAHs [Mutat. Res. 371 (1996) 123; Mutat. Res. 446 (1999) 1] were combined with data on concentrations of PAHs in extracts of model environmental samples (river sediments) to calculate AhR-mediated induction equivalents and mutagenic equivalents. The highest AhR-mediated induction equivalents were found for benzo[k]fluoranthene and benzo[j]fluoranthene, followed by indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[a]pyrene, dibenzo[a,j]anthracene, chrysene, and benzo[b]fluoranthene. High mutagenic equivalents in the river sediments were found for benzo[a]pyrene, dibenzo[a,e]pyrene, and naphtho[2,3-a]pyrene and to a lesser extent also for benzo[a]anthracene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[j]fluoranthene, dibenzo[a,e]fluoranthene and dibenzo[a,i]pyrene. These data illustrate that AhR-mediated activity of PAHs, including the highly mutagenic compounds, occurring in the environment but not routinely monitored, could significantly contribute to their adverse effects.  相似文献   

9.
This study was done to determine the concentration of PAHs in urban soil of Delhi (India). Surface top soil (up to 10 cm depth) samples were collected from four different sampling sites including industrial, roadside, residential, and agricultural areas of Delhi and 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were evaluated. Total PAH concentrations at industrial, roadside, residential, and agricultural sites were 11.46 ± 8.39, 6.96 ± 4.82, 2.12 ± 1.12, and 1.55 ± 1.07 mg/kg (dry weight), respectively, with 3–7 times greater concentrations in industrial and roadside soils than that in residential and agricultural soils. The PAH pattern was dominated by 4- and 5-ring PAHs (contributing >50% to the total PAHs) at industrial and roadside sites with greater concentration of fluoranthene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]anthracene, benzo[ghi]perylene, and pyrene, whereas, residential and agricultural sites showed a predominance of low molecular weight 2- and 3-ring PAHs (fluoranthene, acenaphthene, naphthalene, chrysene, and anthracene). Isomeric pair ratios suggested biomass combustion and fossil fuel emissions as the main sources of PAHs. The toxic equivalency factors (TEFs) showed that carcinogenic potency (benzo[a]pyrene-equivalent concentration (B[a]Peq) of PAH load in industrial and roadside soils was ~10 and ~6 times greater than the agricultural soil.  相似文献   

10.
A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.  相似文献   

11.
The white rot fungus Pleurotus ostreatus was able to mineralize to (sup14)CO(inf2) 7.0% of [(sup14)C]catechol, 3.0% of [(sup14)C]phenanthrene, 0.4% of [(sup14)C]pyrene, and 0.19% of [(sup14)C]benzo[a]pyrene by day 11 of incubation. It also mineralized [(sup14)C]anthracene (0.6%) much more slowly (35 days) and [(sup14)C]fluorene (0.19%) within 15 days. P. ostreatus did not mineralize fluoranthene. The activities of the enzymes considered to be part of the ligninolytic system, laccase and manganese-inhibited peroxidase, were observed during fungal growth in the presence of the various polycyclic aromatic hydrocarbons. Although activity of both enzymes was observed, no distinct correlation to polycyclic aromatic hydrocarbon degradation was found.  相似文献   

12.
The microsomal oxidation of 12 frequently occurring environmental polycyclic aromatic hydrocarbons after incubation with rat-liver microsomes has been studied and their metabolites characterized by means of gas-liquid chromatography/mass spectrometry. The method enables the detection and characterisation of phenols, diols, triols, and tetrols as trimethylsilyl ethers beside the original hydrocarbons. Moreover, the induction properties of some carcinogenic and non-carcinogenic hydrocarbons (benz[a]anthracene, pyrene, chrysene, benzo[a]-pyrene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene) have been studied. Except pyrene and benzo[e]pyrene, all compounds investigated significant but different induction factors. The relevance of the induction for an estimation of the biological effect of environmental polycyclic aromatic hydrocarbons is discussed.  相似文献   

13.
植物法生物修复PAHs和矿物油污染土壤的调控研究   总被引:69,自引:7,他引:62  
选择苜蓿草为供试植物,以污染物含量水平、专性细菌和真菌及有机肥为调控因子,进行了植物法生物修复多环芳烃(PAHs)和矿物油污染土壤的调控研究。结果表明,PAHs和矿物油的降解率与有机肥含量呈正相关,增加有机肥5%,可提高矿物油降解率17.6%~25.6%,PAHs降解率9%.在植物存在条件下,土壤微生物降解功能增强。多环芳烃总量的平均降解率比无植物对照土壤提高2.0%~4.7%.投加特性降解真菌可不同程度地提高土壤PAHs总量和矿物油的降解率。真菌对萤蒽、芘和苯(a)蒽/(艹屈)的降解有明显促进作用。而细菌能明显提高苊稀/芴、蒽和苯(a)萤蒽/苯(k)萤蒽的降解率。  相似文献   

14.
Genotoxicity of polycyclic aromatic hydrocarbons in Escherichia coli PQ37.   总被引:2,自引:0,他引:2  
In the present investigation, 32 polycyclic aromatic hydrocarbons (PAHs) were tested for genotoxicity in E. coli PQ37 using the standard tube assay of the SOS chromotest. PAHs such as benzo[ghi]fluoranthene, benzo[j]fluoranthene, benzo[a]pyrene, chrysene, dibenzo[a,l]pyrene, fluoranthene and triphenylene exhibited high genotoxicity when incubated in the presence of an exogenous metabolic activation mixture. The results were compared to those obtained with the Salmonella/microsome test.  相似文献   

15.
A soil sample collected underneath a sewage pipe of the west side of Yangpu refining factory in Haikou city, Hainan Province, China was inoculated in minimum medium supplemented with fluoranthene. After 8 enrichment cycles, a bacterial consortium (Y12) was obtained through water-silicone oil dual system in the laboratory. The consortium Y12 could degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene. The consortium Y12 was repeatedly cultured for more than 40 circles, from which a bacterial strain FB3 was isolated. This strain was identified as a Sphingobium sp. through the 16S rDNA sequence alignment. Strain FB3 could degrade 99 ± 0.4%, 67 ± 2%, 97 ± 3%, 72 ± 8%, and 6 ± 2% (uncorrected degradation percentages) of phenanthrene, anthracene, fluoranthene and pyrene each at level of 100 mg L−1 and benzo[a]pyrene at 10 mg L−1, respectively, in 10 days, which the five PAHs were the sole carbon source as a mixture in minimum medium. The degradation percentages of phenanthrene, anthracene, fluoranthene, pyrene (each at level of 100 mg L−1) and benzo[a]pyrene (10 mg L−1) by consortium Y12 were 99 ± 0.1%, 65 ± 3%, 99 ± 0.3%, 79 ± 1% and 7 ± 6%, respectively, in 10 days. Strain FB3 could degrade those PAHs under a range of pH 5–9, being optimum at pH 7.  相似文献   

16.
Nonexhaustive extraction (propanol, butanol, hydroxypropyl-β-cyclodextrin [HPCD]), persulfate oxidation and biodegradability assays were employed to determine the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil. After 16 weeks incubation, greater than 89% of three-ring compounds (acenaphthene, anthracene, fluorene, and phenanthrene) and 21% to 79% of four-ring compounds (benz[a]anthracene, chrysene, fluoranthene, and pyrene) were degraded by the indigenous microorganisms under biopile conditions. No significant decrease in five- (benzo[a]pyrene, benzo[b+k]fluoranthene) and six-ring compounds (benz[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) was observed. Desorption of PAHs using propanol or butanol could not predict PAH biodegradability: low-molecular-weight PAH biodegradability was underestimated whereas high-molecular-weight PAH biodegradability was overestimated. Persulfate oxidation and HPCD extraction of creosote-contaminated soil was able to predict three- and four-ring PAH biodegradability; however, the biodegradability of five-ring PAHs was overestimated. These results demonstrate that persulfate oxidation and HPCD extraction are good predictors of PAH biodegradability for compounds with octanol-water partitioning coefficients of < 6.  相似文献   

17.
AIMS: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs). METHODS AND RESULTS: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil. CONCLUSIONS: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane). SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons.  相似文献   

18.
The mutagenic activity of ethyl acetate extracts of culture medium from Cunninghamella elegans incubated 72 h with various polycyclic aromatic hydrocarbons (PAHs) was evaluated in the Salmonella typhimurium reversion assay. All of the PAH extracts were assayed in tester strains TA98 and TA100 both with and without metabolic activation using a liver fraction from Aroclor 1254-treated rats. None of the extracts from fungal incubations with the mutagenic PAHs, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene and benz[a]anthracene, as well as the non-mutagenic PAHs, naphthalene, phenanthrene and anthracene, displayed any appreciable mutagenic activity. In addition, time course experiments indicated that the rate of decrease in mutagenic activity in the extracts from cultures incubated with benzo[a]pyrene or 7,12-dimethylbenz[a]anthracene was coincident with the rate of increase in total metabolism. The results demonstrated the ability of the fungus C. elegans to detoxify known carcinogens and mutagens and suggests that this organism may play an important role in the metabolism and inactivation of PAHs in the environment.Abbreviations hplc high performance liquid chromatography - tlc thin layer chromatography - PAH polycyclic aromatic hydrocarbon  相似文献   

19.
Microbiological analysis of soils from a polycyclic aromatic hydrocarbon (PAH)-contaminated site resulted in the enrichment of five microbial communities capable of utilizing pyrene as a sole carbon and energy source. Communities 4 and 5 rapidly degraded a number of different PAH compounds. Three pure cultures were isolated from community 5 using a spray plate method with pyrene as the sole carbon source. The cultures were identified as strains of Burkholderia ( Pseudomonas ) cepacia on the basis of biochemical and growth tests. The pure cultures (VUN 10 001, VUN 10 002 and VUN 10 003) were capable of degrading fluorene, phenanthrene and pyrene (100 mg l−1) to undetectable levels within 7–10 d in standard serum bottle cultures. Pyrene degradation was observed at concentrations up to 1000 mg l−1. The three isolates were also able to degrade other PAHs including fluoranthene, benz[ a ]anthracene and dibenz[ a , h ]anthracene as sole carbon and energy sources. Stimulation of dibenz[ a , h ]anthracene and benzo[ a ]pyrene degradation was achieved by the addition of small quantities of phenanthrene to cultures containing these compounds. Substrate utilization tests revealed that these micro-organisms could also grow on n -alkanes, chlorinated- and nitro-aromatic compounds.  相似文献   

20.
18 polycyclic aromatic hydrocarbons (PAHs) and 7 quinones were tested for mutagenicity using Salmonella typhimurium TA97, TA98 and TA100 with or without metabolic activation. In the presence of metabolic activation, TA97 was more susceptible to mutation than either TA98 or TA100 by many of PAHs tested. PAHs such as 1-methylphenanthrene, fluoranthene, pyrene, benzo[a]pyrene, benzo[e]pyrene and perylene had high mutagenic effects on TA97 in the presence of metabolic activation. 1,6- and 1,8-pyrenequinones were also highly mutagenic on TA97 in the presence or absence of metabolic activation. It appears that pyrene is mutagenic through its metabolic conversion to pyrenequinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号