首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an effort to elucidate the functions of secreted phospholipase A2 (sPLA2) enzymes in vivo, we generated transgenic (Tg) mice for group V sPLA2 (sPLA2-V) and group X sPLA2 (sPLA2-X), which act potently on phosphatidylcholine in vitro.We found that sPLA2-V Tg mice died in the neonatal period because of respiratory failure. The lungs of sPLA2-V Tg mice exhibited atelectasis with thickened alveolar walls and narrow air spaces, accompanied by infiltration of macrophages and only modest changes in eicosanoid levels. This severe pulmonary defect in sPLA2-V Tg mice was attributable to marked reduction of the lung surfactant phospholipids, phosphatidylcholine and phosphatidylglycerol. Given that the expression of sPLA2-V is greatly elevated in human lungs with severe inflammation, our present results raise the intriguing possibility that this isozyme may contribute to ongoing surfactant hydrolysis often observed in the lungs of patients with respiratory distress syndrome. In contrast, sPLA2-X Tg neonates displayed minimal abnormality of the respiratory tract with normal alveolar architecture and surfactant composition. This unexpected result was likely because sPLA2-X protein existed as an inactive zymogen in most tissues. The active form of sPLA2-X was detected in tissues with inflammatory granulation in sPLA2-X Tg mice. These results suggest that sPLA2-X mostly remains inactive under physiological conditions and that its proteolytic activation occurs during inflammation or other as yet unidentified circumstances in vivo.  相似文献   

2.
PURPOSE OF REVIEW: Inflammation is an integral feature of atherosclerosis, in which inflammatory processes contribute to the initiation, progression and rupture of lipid-rich atherosclerotic plaques. Recent studies have suggested the involvement of the proinflammatory secretory phospholipase A2 (sPLA2)-IIA in the development of atherosclerosis. This enzyme has been proposed to hydrolyze phosphatidylcholine (PC) in lipoproteins to liberate lyso-PC and free fatty acids in the arterial wall, thereby facilitating the accumulation of bioactive lipids and modified lipoproteins in atherosclerotic foci. However, the recent discovery of several novel sPLA2 isozymes has raised the question of which types of sPLA2 truly contribute to the atherosclerotic process. RECENT FINDINGS: Amongst the 10 mammalian sPLA2 isozymes, sPLA2-X, -V, -IIF and -III exhibit much more potent PC-hydrolyzing activity than do the others, and can release free fatty acids and lysophospholipids from the PC-rich outer leaflet of the cellular plasma membrane. In particular, sPLA2-X and sPLA2-V hydrolyze PC in lipoproteins far more efficiently than does sPLA2-IIA. Moreover, sPLA2-X promotes foam cell formation in vitro and is expressed in the atherosclerotic arterial walls of apolipoprotein E deficient mice in vivo. SUMMARY: PC-hydrolyzing sPLA2 isozymes, particularly sPLA2-V and sPLA2-X, are attractive candidates for proatherosclerotic factors that may act in place of sPLA2-IIA. However, their expression in human atherosclerotic lesions requires confirmation by specific methods that can distinguish between the different sPLA2 isozymes.  相似文献   

3.
Hydrolysis of surfactant phospholipids (PL) by secretory phospholipases A(2) (sPLA(2)) contributes to surfactant damage in inflammatory airway diseases such as acute lung injury/acute respiratory distress syndrome. We and others have reported that each sPLA(2) exhibits specificity in hydrolyzing different PLs in pulmonary surfactant and that the presence of hydrophilic surfactant protein A (SP-A) alters sPLA(2)-mediated hydrolysis. This report tests the hypothesis that hydrophobic SP-B also inhibits sPLA(2)-mediated surfactant hydrolysis. Three surfactant preparations were used containing varied amounts of SP-B and radiolabeled tracers of phosphatidylcholine (PC) or phosphatidylglycerol (PG): 1) washed ovine surfactant (OS) (pre- and postorganic extraction) compared with Survanta (protein poor), 2) Survanta supplemented with purified bovine SP-B (1-5%, wt/wt), and 3) a mixture of dipalmitoylphosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) (DPPC:POPC:POPG, 40:40:20) prepared as vesicles and monomolecular films in the presence or absence of SP-B. Hydrolysis of PG and PC by Group IB sPLA(2) (PLA2G1A) was significantly lower in the extracted OS, which contains SP-B, compared with Survanta (P = 0.005), which is SP-B poor. Hydrolysis of PG and PC in nonextracted OS, which contains all SPs, was lower than both Survanta and extracted OS. When Survanta was supplemented with 1% SP-B, PG and PC hydrolysis by PLA2G1B was significantly lower (P < 0.001) than in Survanta alone. When supplemented into pure lipid vesicles and monomolecular films composed of PG and PC mixtures, SP-B also inhibited hydrolysis by both PLA2G1B and Group IIA sPLA2 (PLA2G2A). In films, PLA2G1B hydrolyzed surfactant PL monolayers at surface pressures ≤30 mN/m (P < 0.01), and SP-B lowered the surface pressure range at which hydrolysis can occur. These results suggest the hydrophobic SP, SP-B, protects alveolar surfactant PL from hydrolysis mediated by multiple sPLA(2) in both vesicles (alveolar subphase) and monomolecular films (air-liquid interface).  相似文献   

4.
Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.  相似文献   

5.
Although the expression of the prototypic secretory phospholipase A(2) (sPLA(2)), group IIA (sPLA(2)-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA(2) enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA(2)s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA(2)-V, and to a lesser extent that of sPLA(2)-IID, -IIE, and -IIF, were increased, whereas that of sPLA(2)-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA(2)-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA(2)-IIA inhibitor that turned out to inhibit sPLA(2)-IID, -IIE, -V and -X as well. In contrast, sPLA(2)-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA(2)s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   

6.
Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leukocytes that could damage extracellular surfactant. We considered two mechanisms of surfactant disruption by five human sPLA(2)s, including generation of lysophospholipids and the depletion of specific phospholipids. All five sPLA(2)s studied ultimately caused surfactant dysfunction. Each enzyme exhibited a different pattern of hydrolysis of surfactant phospholipids. Phosphatidylcholine, the major phospholipid in surfactant and the greatest potential source for generation of lysophospholipids, was susceptible to hydrolysis by group IB, group V, and group X sPLA(2)s, but not group IIA or IID. Group IIA hydrolyzed both phosphatidylethanolamine and phosphatidylglycerol, whereas group IID was active against only phosphatidylglycerol. Thus, with groups IB and X, the generation of lysophospholipids corresponded with surfactant dysfunction. However, hydrolysis of and depletion of phosphatidylglycerol had a greater correlation with surfactant dysfunction for groups IIA and IID. Surfactant dysfunction caused by group V sPLA(2) is less clear and may be the combined result of both mechanisms.  相似文献   

7.
Pulmonary surfactant isolated from gene-targeted surfactant protein A null mice (SP-A(-/-)) is deficient in the surfactant aggregate tubular myelin and has surface tension-lowering activity that is easily inhibited by serum proteins in vitro. To further elucidate the role of SP-A and its collagen-like region in surfactant function, we used the human SP-C promoter to drive expression of rat SP-A (rSPA) or SP-A containing a deletion of the collagen-like domain (DeltaG8-P80) in the Clara cells and alveolar type II cells of SP-A(-/-) mice. The level of the SP-A in the alveolar wash of the SP-A(-/-,rSP-A) and SP-A(-/-,DeltaG8-P80) mice was 6.1-and 1.3-fold higher, respectively, than in the wild type controls. Tissue levels of saturated phosphatidylcholine were slightly reduced in the SP-A(-/-,rSP-A) mice compared with SP-A(-/-) littermates. Tubular myelin was present in the large surfactant aggregates isolated from the SP-A(-/-,rSP-A) lines but not in the SP-A(-/-,DeltaG8-P80) mice or SP-A(-/-) controls. The equilibrium and minimum surface tensions of surfactant from the SP-A(-/-,rSP-A) mice were similar to SP-A(-/-) controls, but both were markedly elevated in the SP-A(-/-,DeltaG8-P80) mice. There was no defect in the surface tension-lowering activity of surfactant from SP-A(+/+,DeltaG8-P80) mice, indicating that the inhibitory effect of DeltaG8-P80 on surface activity can be overcome by wild type levels of mouse SP-A. The surface activity of surfactant isolated from the SP-A(-/-,rSP-A) but not the SP-A(-/-,DeltaG8-P80) mice was more resistant than SP-A(-/-) littermate control animals to inhibition by serum proteins in vitro. Pressure volume relationships of lungs from the SP-A(-/-), SP-A(-/-,rSP-A), and SP-A(-/-,DeltaG8-P80) lines were very similar. These data indicate that expression of SP-A in the pulmonary epithelium of SP-A(-/-) animals restores tubular myelin formation and resistance of isolated surfactant to protein inhibition by a mechanism that is dependent on the collagen-like region.  相似文献   

8.
Previous in vitro studies have suggested that surfactant protein A (SP-A) may play a role in pulmonary surfactant homeostasis by mediating surfactant secretion and clearance. However, mice made deficient in SP-A [SP-A (-/-) animals] have relatively normal levels of surfactant compared with wild-type SP-A (+/+) animals. We hypothesize that SP-A may play a role in surfactant homeostasis after acute lung injury. Bacterial lipopolysaccharide was instilled into the lungs of SP-A (-/-) mice and SP-A (+/+) mice to induce injury. Surfactant phospholipid levels were increased 1.6-fold in injured SP-A (-/-) animals, although injury did not alter [3H]choline or [14C]palmitate incorporation into dipalmitoylphosphatidylcholine (DPPC), suggesting no change in surfactant synthesis/secretion 12 h after injury. Clearance of [3H]DPPC from the lungs of injured SP-A (-/-) animals was decreased by approximately 40%. Instillation of 50 microg of exogenous SP-A rescued both the clearance defect and the increased phospholipid defect in injured SP-A (-/-) animals, suggesting that SP-A may play a role in regulating clearance of surfactant phospholipids after acute lung injury.  相似文献   

9.
We previously showed that the seminatural surfactant Curosurf inhibits the in vitro synthesis of secretory type IIA phospholipase A(2) (sPLA(2)-IIA) in alveolar macrophages (AM). These cells are the main source of sPLA(2)-IIA in a guinea pig model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Here, we investigate the effect of Curosurf on the pulmonary synthesis of sPLA(2)-IIA in this ALI model. Our results showed that intratracheal administration of LPS (330 microg/kg) induced an increase in pulmonary expression of sPLA(2)-IIA, which was inhibited when animals received Curosurf (16 mg/guinea pig) 30 min or 8 h after LPS instillation. When AM were isolated from LPS-treated animals and cultured in conditioned medium, they expressed higher levels of sPLA(2)-IIA than AM from saline-treated animals. This ex vivo sPLA(2)-IIA expression was significantly reduced when guinea pigs received Curosurf 30 min after LPS instillation. Finally, we examined the effect of Curosurf on pulmonary inflammation measured 8 or 24 h after LPS administration. Curosurf instillation 30 min or 8 h after LPS reversed the increase in tumor necrosis factor-alpha expression, polymorphonuclear cell extravasation, and protein concentration in bronchoalveolar lavage fluids. Curosurf also decreased the bronchial reactivity induced by LPS. We conclude that Curosurf inhibits the pulmonary expression of sPLA(2)-IIA and exhibits palliative anti-inflammatory effects in an animal model of ALI.  相似文献   

10.
Secretory phospholipases A(2) (sPLA(2)s) are a diverse family of low molecular mass enzymes (13-18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA(2) (sPLA(2)-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA(2) (sPLA(2)-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA(2)-X in several respects. Although sPLA(2)-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA(2)-X. In addition, the requirement of Ca(2+) for the lipolysis of LDL was about 10-fold higher for sPLA(2)-V than sPLA(2)-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA(2)-V in the presence of sodium citrate, which contrasted with the potent response to sPLA(2)-X. Moreover, sPLA(2)-X, but not sPLA(2)-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA(2)-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (K(d) = 3.1 nM) in the presence of Ca(2+). Selective interaction of sPLA(2)-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.  相似文献   

11.
There is a considerable body of evidence supporting the role of secretory type II-A phospholipase A(2) (sPLA(2)-IIA) as an effector of the innate immune response. This enzyme also exhibits bactericidal activity especially toward Gram-positive bacteria. In this study we examined the ability of sPLA(2)-IIA to kill Bacillus anthracis, the etiological agent of anthrax. Our results show that both germinated B. anthracis spores and encapsulated bacilli were sensitive to the bactericidal activity of recombinant sPLA(2)-IIA in vitro. In contrast, nongerminated spores were resistant. This bactericidal effect was correlated to the ability of sPLA(2)-IIA to hydrolyze bacterial membrane phospholipids. Guinea pig alveolar macrophages, the major source of sPLA(2)-IIA in an experimental model of acute lung injury, released enough sPLA(2)-IIA to kill extracellular B. anthracis. The production of sPLA(2)-IIA was significantly inhibited by B. anthracis lethal toxin. Human bronchoalveolar lavage fluids from acute respiratory distress syndrome patients are known to contain sPLA(2)-IIA; bactericidal activity against B. anthracis was detected in a high percentage of these samples. This anthracidal activity was correlated to the levels of sPLA(2)-IIA and was abolished by an sPLA(2)-IIA inhibitor. These results suggest that sPLA(2)-IIA may play a role in innate host defense against B. anthracis infection and that lethal toxin may help the bacteria to escape from the bactericidal action of sPLA(2)-IIA by inhibiting the production of this enzyme.  相似文献   

12.
13.
Secreted phospholipase A2 group X (sPLA(2)-X) is one of the most potent enzymes of the phospholipase A(2) lipolytic enzyme superfamily. Its high catalytic activity toward phosphatidylcholine (PC), the major phospholipid of cell membranes and low-density lipoproteins (LDL), has implicated sPLA(2)-X in chronic inflammatory conditions such as atherogenesis. We studied the role of sPLA(2)-X enzyme activity in vitro and in vivo, by generating sPLA(2)-X-overexpressing macrophages and transgenic macrophage-specific sPLA(2)-X mice. Our results show that sPLA(2)-X expression inhibits macrophage activation and inflammatory responses upon stimulation, characterized by reduced cell adhesion and nitric oxide production, a decrease in tumor necrosis factor (TNF), and an increase in interleukin (IL)-10. These effects were mediated by an increase in IL-6, and enhanced production of prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta12,14-prostaglandin J(2) (PGJ(2)). Moreover, we found that overexpression of active sPLA(2)-X in macrophages strongly increases foam cell formation upon incubation with native LDL but also oxidized LDL (oxLDL), which is mediated by enhanced expression of scavenger receptor CD36. Transgenic sPLA(2)-X mice died neonatally because of severe lung pathology characterized by interstitial pneumonia with massive granulocyte and surfactant-laden macrophage infiltration. We conclude that overexpression of the active sPLA(2)-X enzyme results in enhanced foam cell formation but reduced activation and inflammatory responses in macrophages in vitro. Interestingly, enhanced sPLA(2)-X activity in macrophages in vivo leads to fatal pulmonary defects, suggesting a crucial role for sPLA(2)-X in inflammatory lung disease.  相似文献   

14.
15.
The secretory phospholipase A2 (sPLA2) family in mammals contains more than 10 enzymes. In this study, we examined by immunohistochemistry the localization of six sPLA2s (IIA, IID, IIE, IIF, V and X) in human heart, kidney, liver and stomach. In normal hearts, sPLA2-IIA was detected in coronary vascular smooth muscle cells (VSMC) and sPLA2-V in cardiomyocytes beneath the endocardium. In infarcted hearts, expression of these two enzymes was markedly increased in damaged cardiomyocytes, and expression of sPLA2-IID and-IIE, which was undetectable in normal hearts, was elevated in damaged cardiomyocytes and VSMC, respectively. In infarcted kidneys, sPLA2-IIA and-V were markedly induced in the uriniferous tubular epithelium. In livers affected by viral hepatitis, sPLA2-IIA and-V were expressed in hepatocytes with fatty degeneration. In the gastric glands exhibiting intestinal metaplasia, sPLA2-IIA was localized in the glandular base, sPLA2-IID and-V in the glandular body epithelium, sPLA2-IIE and-IIF in goblet cells in the foveolar epithelium, and sPLA2-X in both glandular body epithelial cells and foveolar epithelial goblet cells. In the gastric submucosal tissues, sPLA2-IIA and-IIE were located in VSMC and sPLA2-V was in the interstitial fibroblasts. In addition, sPLA2-IIA,-IIE,-IIF and-X were highly expressed in gastric signet ring cell carcinoma. Thus, individual sPLA2s exhibit unique cellular localizations in each tissue, suggesting their distinct roles in pathophysiology.  相似文献   

16.
The effects of surfactant protein (SP)-A on the dynamic surface tension lowering and resistance to inhibition of dispersions of calf lung surfactant extract (CLSE) and mixtures of synthetic phospholipids combined with SP-B,C hydrophobic apoproteins were studied at 37 degrees C and rapid cycling rate (20 cycles/min). Addition of SP-A to CLSE, which already contains SP-B and -C, gave a slight improvement in the time course of surface tension lowering on an oscillating bubble apparatus in the absence of inhibitory protein molecules such as albumin or hemoglobin. However, when these proteins were present at concentrations of 10-50 mg/ml, SP-A substantially improved the resistance of CLSE to their inhibitory effects. The beneficial effect of SP-A required the presence of Ca2+ ions, and disappeared when EDTA was substituted for this divalent cation in the subphase. The effect was also retained when SP-A was heated to 50 degrees C prior to addition to CLSE, but was abolished by heating SP-A to 99 degrees C. Additional studies showed that similar improvements in resistance to inhibition were found when SP-A was added to synthetic mixtures of dipalmitoyl phosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (80:20 by weight) reconstituted with 1% SP-B or SP-B and -C, but not to phospholipid mixtures containing only SP-C. The requirements for SP-B and calcium for the beneficial effects of SP-A on surface activity suggest that the formation of ordered, larger phospholipid-apoprotein aggregates may be involved in the process. The finding that SP-A enhances the ability of CLSE and other surfactant mixtures containing SP-B to resist inhibition is an advantage that will need to be weighed against other factors such as increased antigenicity and heat sensitivity in therapeutic applications in surfactant replacement therapy.  相似文献   

17.
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.  相似文献   

18.
19.
Although it has been proposed that arachidonate release by several secretory phospholipase A2 (sPLA2) isozymes is modulated by cytosolic PLA2 (cPLA2), the cellular component(s) that intermediates between these two signaling PLA2s remains unknown. Here we provide evidence that 12- or 15-lipoxygenase (12/15-LOX), which lies downstream of cPLA2, plays a pivotal role in cytokine-induced gene expression and function of sPLA2-IIA. The sPLA2-IIA expression and associated PGE2 generation induced by cytokines in rat fibroblastic 3Y1 cells were markedly attenuated by antioxidants that possess 12/15-LOX inhibitory activity. 3Y1 cells expressed 12/15-LOX endogenously, and forcible overexpression of 12/15-LOX in these cells greatly enhanced cytokine-induced expression of sPLA2-IIA, with a concomitant increase in delayed PG generation. Moreover, studies using 293 cells stably transfected with sPLA2-IIA revealed that stimulus-dependent hydrolysis of membrane phospholipids by sPLA2-IIA was enhanced by overexpression of 12/15-LOX. These results indicate that the product(s) generated by the cPLA2-12/15-LOX pathway following cell activation may play two roles: enhancement of sPLA2-IIA gene expression and membrane sensitization that leads to accelerated sPLA2-IIA-mediated hydrolysis.  相似文献   

20.
Incorporation of pulmonary surfactant into fibrin inhibits its plasmic degradation. In the present study we investigated the influence of surfactant proteins (SP)-A, SP-B, and SP-C on the fibrinolysis-inhibitory capacity of surfactant phospholipids. Plasmin-induced fibrinolysis was quantified by means of a (125)I-fibrin plate assay, and surfactant incorporation into polymerizing fibrin was analyzed by measuring the incorporation of (3)H-labeled L-alpha-dipalmitoylphosphatidylcholine into the insoluble clot material. Incorporation of a calf lung surfactant extract (Alveofact) and an organic extract of natural rabbit large surfactant aggregates (LSA) into a fibrin clot revealed a stronger inhibitory effect on plasmic cleavage of this clot than a synthetic phospholipid mixture (PLX) and unprocessed LSA. Reconstitution of PLX with SP-B and SP-C increased, whereas reconstitution with SP-A decreased, the fibrinolysis-inhibitory capacity of the phospholipids. The SP-B effect was paralleled by an increased incorporation of phospholipids into fibrin. We conclude that the inhibitory effect of surfactant incorporation into polymerizing fibrin on its susceptibility to plasmic cleavage is enhanced by SP-B and SP-C but reduced by SP-A. In the case of SP-B, increased phospholipid incorporation may underlie this finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号