首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of caveolins in the sinus endothelial cells of the rat spleen has been demonstrated by confocal laser scanning and electron microscopy. Caveolin-3, a muscle-specific caveolin, was detected by Western blot analysis and immunofluorescence microscopy of isolated sinus endothelial cells and tissue cryosections of the spleen. During the immunofluorescence microscopy of isolated endothelial cells, both caveolin-3 and caveolin-1 were found. In tissue cryosections of the spleen, caveolin-3, as well as caveolin-1 and -2, was present in the contours and cytoplasm of the cells. Immunogold electron microscopy of tissue cryosections revealed caveolin-3, -1, and -2 to be present in caveolae in the apical, lateral, and basal plasma membranes and some vesicular profiles in the cytoplasm of sinus endothelial cells. Furthermore, caveolin-3 was colocalized with caveolin-1 in the same caveolae in the apical, lateral, and basal plasma membranes. Stress fibers and tubulovesicular structures were situated in the vicinity of caveolae labeled with anti-caveolin-3, anti-caveolin-1, and anti-caveolin-2 antibodies. It is speculated that caveolae in sinus endothelial cells play an important role in the constriction of stress fibers.  相似文献   

2.
Mechanical properties of the cell are important biomarkers for probing its architectural changes caused by cellular processes and/or pathologies. The development of microfluidic technologies has enabled measuring the cell’s mechanical properties at high throughput so that mechanical phenotyping can be applied to large samples in reasonable timescales. These studies typically measure the stiffness of the cell as the only mechanical biomarker and do not disentangle the rheological contributions of different structural components of the cell, including the cell cortex, the interior cytoplasm and its immersed cytoskeletal structures, and the nucleus. Recent advancements in high-speed fluorescent imaging have enabled probing the deformations of the cell cortex while also tracking different intracellular components in rates applicable to microfluidic platforms. We present a, to our knowledge, novel method to decouple the mechanics of the cell cortex and the cytoplasm by analyzing the correlation between the cortical deformations that are induced by external microfluidic flows and the nucleus displacements, induced by those cortical deformations, i.e., we use the nucleus as a high-throughput microrheological probe to study the rheology of the cytoplasm, independent of the cell cortex mechanics. To demonstrate the applicability of this method, we consider a proof-of-concept model consisting of a rigid spherical nucleus centered in a spherical cell. We obtain analytical expressions for the time-dependent nucleus velocity as a function of the cell deformations when the interior cytoplasm is modeled as a viscous, viscoelastic, porous, and poroelastic material and demonstrate how the nucleus velocity can be used to characterize the linear rheology of the cytoplasm over a wide range of forces and timescales/frequencies.  相似文献   

3.
Biopolymer networks, such as those constituting the cytoskeleton of a cell or biological tissue, exhibit a nonlinear strain-stiffening behavior when subjected to large deformations. Interestingly, rheological experiments on various in vitro biopolymer networks have shown similar strain-stiffening trends regardless of the differences in their microstructure or constituents, suggesting a universal stiffening mechanism. In this article, we use computer simulations of a random network comprised of cross-linked biopolymer-like fibers to substantiate the notion that this universality lies in the existence of two fundamental stiffening mechanisms. After showing that the large strain response is accompanied by the development of a stress path, i.e., a percolating path of axially stressed fibers and cross-links, we demonstrate that the strain stiffening can be caused by two distinctly different mechanisms: 1) the pulling out of stress-path undulations; and 2) reorientation of the stress path. The former mechanism is bending-dominated and can be recognized by a power-law dependence with exponent 3/2 of the shear modulus on stress, whereas the latter mechanism is stretching-dominated and characterized by a power-law exponent 1/2. We demonstrate how material properties of the constituents, as well as the network microstructure, can affect the transition between the two stiffening mechanisms and, as such, control the dominant power-law scaling behavior.  相似文献   

4.
Tseng Y  Kole TP  Wirtz D 《Biophysical journal》2002,83(6):3162-3176
This paper introduces the method of live-cell multiple-particle-tracking microrheology (MPTM), which quantifies the local mechanical properties of living cells by monitoring the Brownian motion of individual microinjected fluorescent particles. Particle tracking of carboxylated microspheres imbedded in the cytoplasm produce spatial distributions of cytoplasmic compliances and frequency-dependent viscoelastic moduli. Swiss 3T3 fibroblasts are found to behave like a stiff elastic material when subjected to high rates of deformations and like a soft liquid at low rates of deformations. By analyzing the relative contributions of the subcellular compliances to the mean compliance, we find that the cytoplasm is much more mechanically heterogeneous than reconstituted actin filament networks. Carboxylated microspheres embedded in cytoplasm through endocytosis and amine-modified polystyrene microspheres, which are microinjected or endocytosed, often show directed motion and strong nonspecific interactions with cytoplasmic proteins, which prevents computation of local moduli from the microsphere displacements. Using MPTM, we investigate the mechanical function of alpha-actinin in non-muscle cells: alpha-actinin-microinjected cells are stiffer and yet mechanically more heterogeneous than control cells, in agreement with models of reconstituted cross-linked actin filament networks. MPTM is a new type of functional microscopy that can test the local, rate-dependent mechanical and ultrastructural properties of living cells.  相似文献   

5.
Luo Y  Xu X  Lele T  Kumar S  Ingber DE 《Journal of biomechanics》2008,41(11):2379-2387
Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on the extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model can also explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors and represent a new handle on multi-scale modeling of living materials.  相似文献   

6.
Postnatal change in the distribution of actin filaments in endothelial cells was studied in the rat aorta by use of rhodamine-phalloidin staining and confocal laser scanning microscopy. Endothelial cells of the rat aorta possessed two populations of actin filament bundles, namely, peripheral bands at the cell border and stress fibers running longitudinally in the cytoplasm. Aortic endothelial cells of the neonatal rat contained only stress fibers, whereas those of the 10-day-old rat developed both peripheral bands and stress fibers. After 20 days of age, aortic endothelial cells had predominantly peripheral bands with occasional stress fibers around the branch orifices. During postnatal development the length density of stress fibers in aortic endothelial cells decreased, whereas individual stress fibers in endothelial cells were shortened. Electron-microscopic observation revealed that the high intercellular boundaries of aortic endothelial cells at birth decreased in height and developed cytoplasmic interdigitations after 20 days of age. The occurrence of peripheral bands at the cell border is thought to be closely related to formation of cytoplasmic interdigitation which strengthens the mechanical connection between endothelial cells against increasing transmural pressure. Expression of stress fibers in aortic endothelial cells of the neonatal rat is supposed to be affected by longitudinal elongation of the developing aorta, whereas their postnatal decrease is though to be correlated with the change of fluid shear stress loaded in the aortic endothelium.  相似文献   

7.
Intact frog skeletal muscle fibers were injected with the Ca2+ indicator fura-2 conjugated to high molecular weight dextran (fura dextran, MW approximately 10,000; dissociation constant for Ca2+, 0.52 microM), and the fluorescence was measured from cytoplasm (17 degrees C). The fluorescence excitation spectrum of fura dextran measured in resting fibers was slightly red-shifted compared with the spectrum of the Ca(2+)-free indicator in buffer solutions. A simple comparison of the spectra in the cytoplasm and the in vitro solutions indicates an apparently "negative" cytoplasmic [Ca2+], which probably reflects an alteration of the indicator properties in the cytoplasm. To calibrate the indicator's fluorescence signal in terms of cytoplasmic [Ca2+], we applied beta-escin to permeabilize the cell membrane of the fibers injected with fura dextran. After treatment with 5 microM beta-escin for 30-35 min, the cell membrane was permeable to small molecules (e.g., Ca2+, ATP), whereas the 10-kD fura dextran only slowly leaked out of the fiber. It was thus possible to estimate calibration parameters in the indicator fluorescence in the fibers by changing the bathing solution [Ca2+] to various levels; the average values for the fraction of Ca(2+)-bound indicator in the resting fibers and the dissociation constant for Ca2+ (KD) were, respectively, 0.052 and 1.0 microM. For the comparison, the KD value was also estimated by a kinetic analysis of the indicator fluorescence change after an action potential stimulation in intact muscle fibers, and the average value was 2.5 microM. From these values estimated in the fibers, resting cytoplasmic [Ca2+] in frog skeletal muscle fibers was calculated to be 0.06-0.14 microM. The range lies between the high estimates from other tetracarboxylate indicators (0.1-0.3 microM; Kurebayashi, N., A. B. Harkins, and S. M. Baylor. 1993. Biophysical Journal. 64:1934-1960; Harkins, A. B., N. Kurebayashi, and S. M. Baylor. 1993. Biophysical Journal. 65:865-881) and the low estimate from the simultaneous use of aequorin and Ca(2+)-sensitive microelectrodes (< 0.04-0.06 microM; Blatter, L. A., and J. R. Blinks. 1991. Journal of General Physiology. 98:1141-1160) recently reported for resting cytoplasmic [Ca2+] in frog muscle fibers.  相似文献   

8.
Stress fibers (SFs), a contractile bundle of actin filaments, play a critical role in mechanotransduction in adherent cells; yet, the mechanical properties of SFs are poorly understood. Here, we measured tensile properties of single SFs by in vitro manipulation with cantilevers. SFs were isolated from cultured vascular smooth muscle cells with a combination of low ionic-strength extraction and detergent extraction and were stretched until breaking. The breaking force and the Young's modulus (assuming that SFs were isotropic) were, on average, 377 nN and 1.45 MPa, which were approximately 600-fold greater and three orders of magnitude lower, respectively, than those of actin filaments reported previously. Strain-induced stiffening was observed in the force-strain curve. We also found that the extracted SFs shortened to approximately 80% of the original length in an ATP-independent manner after they were dislodged from the substrate, suggesting that SFs had preexisting strain in the cytoplasm. The force required for stretching the single SFs from the zero-stress length back to the original length was approximately 10 nN, which was comparable with the traction force level applied by adherent cells at single adhesion sites to maintain cell integrity. These results suggest that SFs can bear intracellular stresses that may affect overall cell mechanical properties and will impact interpretation of intracellular stress distribution and force-transmission mechanism in adherent cells.  相似文献   

9.

Background

Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.

Methodology

We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.

Conclusion

We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.  相似文献   

10.
11.
The cytoskeleton in endocardial endothelium of rat heart was examined by en face confocal scanning laser microscopy. In the ventricular cavity, endocardial endothelial cells had a polygonal shape and F-actin staining was generally restricted to the peripheral junctional actin band. Central F-actin bundles, or stress fibers, in endocardial endothelial cells were found on the tendon end of papillary muscles, especially in the right ventricle, and frequently in the outflow tract of both ventricles; elsewhere, stress fibers were scarce. Many endocardial endothelial cells were elongated in areas of endothelium with stress fibers, but no correlation was found between cell elongation and the number of stress fibers. An inverse correlation was found between the number of stress fibers and the surface area of endocardial endothelial cells. Shear stress as well as mechanical deformation of the surface of the ventricular wall during the cardiac cycle may affect cell shape and the organization of actin filaments in endocardial endothelial cells. Vimentin in endocardial endothelial cells formed a filamentous network with some distinct cytoplasmic and juxtanuclear vimentin bundles. No perinuclear ring of vimentin filaments was observed in endocardial endothelium. Microtubules in endocardial endothelial cells were, in contrast to endothelial cells of rat aorta, not aligned, less closely packed and originated from randomly distributed centriolar regions. The cytoskeleton has been suggested to play an important role in cellular functions of vascular endothelial cells. Accordingly, differences in the cytoskeletal organization between endocardial and vascular endothelial cells may relate to differences in functional properties.  相似文献   

12.
We have used micromanipulation to study the attachment of chromosomes to the spindle and the mechanical properties of the chromosomal spindle fibers. Individual chromosomes can be displaced about the periphery of the spindle, in the plane of the metaphase plate, without altering the structure of the spindle or the positions of the nonmanipulated chromosomes. From mid-prometaphase through the onset of anaphase, chromosomes resist displacement toward either spindle pole, or beyond the spindle periphery. In anaphase a chromosome can be displaced either toward its spindle pole or laterally, beyond the periphery of the spindle; however, the chromosome resists displacement away from the spindle pole. When an anaphase half-bivalent is displaced toward its spindle pole, it stops migrating until the nonmanipulated half-bivalents reach a similar distance from the pole. The manipulated half-bivalent then resumes its poleward migration at the normal anaphase rate. No evidence was found for mechanical attachments between separating half-bivalents in anaphase. Our observations demonstrate that chromosomes are individually anchored to the spindle by fibers which connect the kinetochores of the chromosomes to the spindle poles. These fibers are flexible, much less extensible than the chromosomes, and are to pivot about their attachment points. While the fibers are able to support a tensile force sufficient to stretch a chromosome, they buckle when subjected to a compressive force. Preliminary evidence suggests that the mechanical attachment fibers detected with micromanipulation correspond to the birefringent chromosomal spindle fibers observed with polarization microscopy.  相似文献   

13.
To build anisotropic, mechanically functioning tissue, it is essential to understand how cells orient in response to mechanical stimuli. Therefore, a computational model was developed which predicts cell orientation, based on the actin stress fiber distribution inside the cell. In the model, the stress fiber distribution evolves dynamically according to the following: (1) Stress fibers contain polymerized actin. The total amount of depolymerized plus polymerized actin is constant. (2) Stress fibers apply tension to their environment. This active tension is maximal when strain rate and absolute strain are zero and reduces with increasing shortening rate and absolute strain. (3) A high active fiber stress in a direction leads to a large amount of fibers in this direction. (4) The cell is attached to a substrate; all fiber stresses are homogenized into a total cell stress, which is in equilibrium with substrate stress. This model predicts that on a substrate of anisotropic stiffness, fibers align in the stiffest direction. Under cyclic strain when the cellular environment is so stiff that no compaction occurs (1 MPa), the model predicts strain avoidance, which is more pronounced with increasing strain frequency or amplitude. Under cyclic strain when the cellular environment is so soft that cells can compact it (10 kPa), the model predicts a preference for the cyclically strained compared to the compacting direction. These model predictions all agree with experimental evidence. For the first time, a computational model predicts cell orientation in response to this range of mechanical stimuli using a single set of parameters.  相似文献   

14.
Immunofluorescence microscopy was used to determine the number of endothelial cells with stress fibers for three age groups, and for three distinct anatomical locations within the descending thoracic aorta of both normotensive and spontaneously hypertensive rats. For each age group examined, hypertensive rats consistently demonstrated greater stress fiber expression than did normotensive rats. Neither age nor blood pressure was the predominant influence on stress fiber expression in aortic endothelium. In the normotensive rats, stress fiber expression remained unchanged for all age groups examined. For both strains, however, more endothelial cells with stress fibers were found in those regions where fluid shear stresses are expected to be high, when compared with those regions where the fluid shear stresses are expected to be low. This observation suggests that anatomical location, with its implied differences in fluid shear stress levels, is a major influence on stress fiber expression within this tissue. Electron microscopy was used to determine the intracellular distribution of stress fibers for both strains. Most stress fibers in both strains were located in the abluminal portion of the endothelial cells. This result is consistent with a role for stress fibers in cellular adhesion. However, the hypertensive rats had a higher proportion of stress fibers in the luminal portion of their cytoplasm than the normotensive rats. This increased presence of stress fibers in the luminal portion of the cell may be important in maintaining the structural integrity of the endothelial cell in the face of elevated hemodynamic forces in situ.  相似文献   

15.
Summary In the retina of the goldfish and the rainbow trout, the axons of ganglion cells belong to the unmyelinated or the myelinated types. The unmyelinated fibers are either arranged in bundles in direct contact with neighboring fibers or they are separated by intervening lamellae of oligodendroglial cytoplasm. The myelin sheaths of the myelinated fibers differ greatly in thickness. Most fibers show 3 to 5 myelin layers; single fiber elements, however, show 10 or even more layers.  相似文献   

16.
17.
Using high-voltage and conventional electron microscopy of cell whole mounts, we have investigated the effects of tumor-conditioned medium and hypothalmus-derived growth factor on the structure of capillary endothelial cells during their attachment and spreading in tissue culture. Cells were cultured in A, Dulbecco's Modified Eagle's Medium (DMEM) and 10% calf serum; B, equal parts of A and 48 hr mouse sarcoma conditioned medium; and C, A containing 10 units of hypothalamus-derived growth factor. Cells cultured in all three media were fully spread, and to the same extent, by 4 hr after plating. While spreading, cells cultured in DMEM alone developed prominent stress fibers and contained numerous bundles of microtubules which formed radical tracts along which mitochondria and other organelles rapidly moved to the cell periphery. Stress fibers were thinner and microtubule tracts fewer in number in cells cultured in tumor-conditioned medium. In 4 hr, organelles moved only part of the distance to the cell margin. Stress fibers were rudimentary and microtubules randomly orientated in cells exposed to hypothalamus-derived growth factor. Most organelles remained near the cell nucleus. The dramatic decrease in stress fibers and microtubule tracts in cells grown in tumor-conditioned medium and hypothalamus-derived growth factor and the subsequent decreased capacity of the cells to move organelles toward their periphery could have some functional significance relative to the growth-promoting activity of these substances.  相似文献   

18.
Endothelial cells lining the vasculature share some properties with macrophages and neutrophils in that they can take up material from the blood and are known to migrate, particularly during wound healing. We observed that endothelial cells isolated from bovine pulmonary arteries ingested magnetic iron oxide particles during culture in vitro. Using a non-optical, magnetometric method, we examined motions of magnetic-particle containing intracellular vacuoles. We demonstrated that these organelles move within endothelial cells, but at a slower rate than phagosomes within macrophages. Magnetometry was used to show that incubation with endotoxin (10 micrograms/ml) for 4 hr resulted in a decrease in cytoplasmic movement; yet the fluidity of the cytoplasm was increased, as measured by intracellular particle response to forced motion. We conclude that intracellular magnetic probe particles can detect vesicular motion in endothelial cells, and that endotoxin exposure can affect endothelial cells directly, altering their physical properties; these alterations precede ultrastructural evidence of cell death.  相似文献   

19.
Cetaceans diverged from terrestrial mammals approximately 53 mya and have evolved independently since then. During this time period, they have developed a complex nervous system with many adaptations to the marine environment. This study used stereological methods to estimate the total number and diameter of the myelinated fibers in the corpus callosum of the common minke whale (Balaenoptera acutorostrata) (n= 4). The total number of callosal fibers was estimated to 55.3 × 106 (range: 49.0 × 106–59.1 × 106). Despite large variations of the callosal area (350–950 mm2), there was little variation in total fiber number. The fibers with diameters ranging from 0.822 to 1.14 μm were the most frequent, which is similar to results obtained in the human brain using the same method. There was no systematic distribution of large‐, middle‐, or small‐sized fibers along the rostrocaudal axis of the corpus callosum. This study indicated that the corpus callosum of the common minke whale is small and has few fibers compared to terrestrial mammals.  相似文献   

20.
Wan W  Dixon JB  Gleason RL 《Biophysical journal》2012,102(12):2916-2925
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号