首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rarity of beneficial mutations has frustrated efforts to develop a quantitative theory of adaptation. Recent models of adaptive walks, the sequential substitution of beneficial mutations by selection, make two compelling predictions: adaptive walks should be short, and fitness increases should become exponentially smaller as successive mutations fix. We estimated the number and fitness effects of beneficial mutations in each of 118 replicate lineages of Aspergillus nidulans evolving for approximately 800 generations at two population sizes using a novel maximum likelihood framework, the results of which were confirmed experimentally using sexual crosses. We find that adaptive walks do indeed tend to be short, and fitness increases become smaller as successive mutations fix. Moreover, we show that these patterns are associated with a decreasing supply of beneficial mutations as the population adapts. We also provide empirical distributions of fitness effects among mutations fixed at each step. Our results provide a first glimpse into the properties of multiple steps in an adaptive walk in asexual populations and lend empirical support to models of adaptation involving selection towards a single optimum phenotype. In practical terms, our results suggest that the bulk of adaptation is likely to be accomplished within the first few steps.  相似文献   

2.
Theories of adaptive molecular evolution have recently experienced significant expansion, and their predictions and assumptions have begun to be subjected to rigorous empirical testing. However, these theories focus largely on predicting the first event in adaptive evolution, the fixation of a single beneficial mutation. To address long-term adaptation it is necessary to include new assumptions, but empirical data are needed for guidance. To empirically characterize the general properties of adaptive walks, eight recently isolated relatives of the single-stranded DNA (ssDNA) bacteriophage φX174 (family Microviridae) were adapted to identical selective conditions. Three of the eight genotypes were adapted in replicate, for a total of 11 adaptive walks. We measured fitness improvement and identified the genetic changes underlying the observed adaptation. Nearly all phages were evolvable; nine of the 11 lineages showed a significant increase in fitness. However, fitness plateaued quickly, and adaptation was achieved through only three substitutions on average. Parallel evolution was rampant, both across replicates of the same genotype as well as across different genotypes, yet adaptation of replicates never proceeded through the exact same set of mutations. Despite this, final fitnesses did not vary significantly among replicates. Final fitnesses did vary significantly across genotypes but not across phylogenetic groupings of genotypes. A positive correlation was found between the number of substitutions in an adaptive walk and the magnitude of fitness improvement, but no correlation was found between starting and ending fitness. These results provide an empirical framework for future adaptation theory.  相似文献   

3.
The fitness landscape—the mapping between genotypes and fitness—determines properties of the process of adaptation. Several small genotypic fitness landscapes have recently been built by selecting a handful of beneficial mutations and measuring fitness of all combinations of these mutations. Here, we generate several testable predictions for the properties of these small genotypic landscapes under Fisher's geometric model of adaptation. When the ancestral strain is far from the fitness optimum, we analytically compute the fitness effect of selected mutations and their epistatic interactions. Epistasis may be negative or positive on average depending on the distance of the ancestral genotype to the optimum and whether mutations were independently selected, or coselected in an adaptive walk. Simulations show that genotypic landscapes built from Fisher's model are very close to an additive landscape when the ancestral strain is far from the optimum. However, when it is close to the optimum, a large diversity of landscape with substantial roughness and sign epistasis emerged. Strikingly, small genotypic landscapes built from several replicate adaptive walks on the same underlying landscape were highly variable, suggesting that several realizations of small genotypic landscapes are needed to gain information about the underlying architecture of the fitness landscape.  相似文献   

4.
We examine properties of adaptive walks on uncorrelated (i.e. random) fitness landscapes starting from moderately fit genotypes under strong selection weak mutation. As an extension of Orr's model for a single step in an adaptive walk under these conditions, we show that the fitness rank of the dominant genotype in a population after the fixation of a beneficial mutation is, on average, (i+6)/4, where i is the fitness rank of the starting genotype. This accounts for the change in rank due to acquiring a new set of single-mutation neighbors after fixing a new allele through natural selection. Under this scenario, adaptive walks can be modeled as a simple Markov chain on the space of possible fitness ranks with an absorbing state at i = 1, from which no beneficial mutations are accessible. We find that these walks are typically short and are often completed in a single step when starting from a moderately fit genotype. As in Orr's original model, these results are insensitive to both the distribution of fitness effects and most biological details of the system under consideration.  相似文献   

5.
Collins S  de Meaux J  Acquisti C 《Genetics》2007,176(2):1089-1099
We investigate how the dynamics and outcomes of adaptation by natural selection are affected by environmental stability by simulating adaptive walks in response to an environmental change of fixed magnitude but variable speed. Here we consider monomorphic lineages that adapt by the sequential fixation of beneficial mutations. This is modeled by selecting short RNA sequences for folding stability and secondary structure conservation at increasing temperatures. Using short RNA sequences allows us to describe adaptive outcomes in terms of genotype (sequence) and phenotype (secondary structure) and to follow the dynamics of fitness increase. We find that slower rates of environmental change affect the dynamics of adaptive walks by reducing the fitness effect of fixed beneficial mutations, as well as by increasing the range of time in which the substitutions of largest effect are likely to occur. In addition, adaptation to slower rates of environmental change results in fitter endpoints with fewer possible end phenotypes relative to lineages that adapt to a sudden change. This suggests that care should be taken when experiments using sudden environmental changes are used to make predictions about adaptive responses to gradual change.  相似文献   

6.
Jain K  Krug J 《Genetics》2007,175(3):1275-1288
We study the adaptation dynamics of an initially maladapted asexual population with genotypes represented by binary sequences of length L. The population evolves in a maximally rugged fitness landscape with a large number of local optima. We find that whether the evolutionary trajectory is deterministic or stochastic depends on the effective mutational distance d(eff) up to which the population can spread in genotype space. For d(eff) = L, the deterministic quasi-species theory operates while for d(eff) < 1, the evolution is completely stochastic. Between these two limiting cases, the dynamics are described by a local quasi-species theory below a crossover time T(x) while above T(x) the population gets trapped at a local fitness peak and manages to find a better peak via either stochastic tunneling or double mutations. In the stochastic regime d(eff) < 1, we identify two subregimes associated with clonal interference and uphill adaptive walks, respectively. We argue that our findings are relevant to the interpretation of evolution experiments with microbial populations.  相似文献   

7.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

8.
Do large populations always outcompete smaller ones? Does increasing the mutation rate have a similar effect to increasing the population size, with respect to the adaptation of a population? How important are substitutions in determining the adaptation rate? In this study, we ask how population size and mutation rate interact to affect adaptation on empirical adaptive landscapes. Using such landscapes, we do not need to make many ad hoc assumption about landscape topography, such as about epistatic interactions among mutations or about the distribution of fitness effects. Moreover, we have a better understanding of all the mutations that occur in a population and their effects on the average fitness of the population than we can know in experimental studies. Our results show that the evolutionary dynamics of a population cannot be fully explained by the population mutation rate \(N\mu\); even at constant \(N\mu\), there can be dramatic differences in the adaptation of populations of different sizes. Moreover, the substitution rate of mutations is not always equivalent to the adaptation rate, because we observed populations adapting to high adaptive peaks without fixing any mutations. Finally, in contrast to some theoretical predictions, even on the most rugged landscapes we study, small population size is never an advantage over larger population size. These result show that complex interactions among multiple factors can affect the evolutionary dynamics of populations, and simple models should be taken with caution.  相似文献   

9.
Zeyl C 《Genetics》2005,169(4):1825-1831
There is currently limited empirical and theoretical support for the prevailing view that adaptation typically results from the fixation of many mutations, each with small phenotypic effects. Recent theoretical work suggests that, on the contrary, most of the phenotypic change during an episode of adaptation can result from the selection of a few mutations with relatively large effects. I studied the genetics of adaptation by populations of budding yeast to a culture regime of daily hundredfold dilution and transfer in a glucose-limited minimal liquid medium. A single haploid genotype isolated after 2000 generations showed a 76% fitness increase over its ancestor. This evolved haploid was crossed with its ancestor, and tetrad dissections were used to isolate a complete series of six meiotic tetrads. The Castle-Wright estimator of the number of loci at which adaptive mutations had been selected, modified to account for linkage and variation among mutations in the size of their effect, is 4.4. The estimate for a second haploid genotype, isolated from a separate population and with a fitness gain of 60%, was 2.7 loci. Backcrosses to the ancestor with the first evolved genotype support the inference that adaptation resulted primarily from two to five mutations. These backcrosses also indicated that deleterious mutations had hitchhiked with adaptive mutations in this evolved genotype.  相似文献   

10.
11.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

12.
The fitness landscape captures the relationship between genotype and evolutionary fitness and is a pervasive metaphor used to describe the possible evolutionary trajectories of adaptation. However, little is known about the actual shape of fitness landscapes, including whether valleys of low fitness create local fitness optima, acting as barriers to adaptive change. Here we provide evidence of a rugged molecular fitness landscape arising during an evolution experiment in an asexual population of Saccharomyces cerevisiae. We identify the mutations that arose during the evolution using whole-genome sequencing and use competitive fitness assays to describe the mutations individually responsible for adaptation. In addition, we find that a fitness valley between two adaptive mutations in the genes MTH1 and HXT6/HXT7 is caused by reciprocal sign epistasis, where the fitness cost of the double mutant prohibits the two mutations from being selected in the same genetic background. The constraint enforced by reciprocal sign epistasis causes the mutations to remain mutually exclusive during the experiment, even though adaptive mutations in these two genes occur several times in independent lineages during the experiment. Our results show that epistasis plays a key role during adaptation and that inter-genic interactions can act as barriers between adaptive solutions. These results also provide a new interpretation on the classic Dobzhansky-Muller model of reproductive isolation and display some surprising parallels with mutations in genes often associated with tumors.  相似文献   

13.
Understanding how a pathogen colonizes and adapts to a new host environment is a primary aim in studying emerging infectious diseases. Adaptive mutations arise among the thousands of variants generated during RNA virus infection, and identifying these variants will shed light onto how changes in tropism and species jumps can occur. Here, we adapted Coxsackie virus B3 to a highly permissive and less permissive environment. Using deep sequencing and bioinformatics, we identified a multi-step adaptive process to adaptation involving residues in the receptor footprints that correlated with receptor availability and with increase in virus fitness in an environment-specific manner. We show that adaptation occurs by selection of a dominant mutation followed by group selection of minority variants that together, confer the fitness increase observed in the population, rather than selection of a single dominant genotype.  相似文献   

14.
Jain K  Seetharaman S 《Genetics》2011,189(3):1029-1043
We consider an asexual population under strong selection-weak mutation conditions evolving on rugged fitness landscapes with many local fitness peaks. Unlike the previous studies in which the initial fitness of the population is assumed to be high, here we start the adaptation process with a low fitness corresponding to a population in a stressful novel environment. For generic fitness distributions, using an analytic argument we find that the average number of steps to a local optimum varies logarithmically with the genotype sequence length and increases as the correlations among genotypic fitnesses increase. When the fitnesses are exponentially or uniformly distributed, using an evolution equation for the distribution of population fitness, we analytically calculate the fitness distribution of fixed beneficial mutations and the walk length distribution.  相似文献   

15.
A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical–experimental framework for disclosing the presence of such adaptation‐speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation–accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic‐adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data‐driven individual‐based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation‐speeding mechanisms in general.  相似文献   

16.
Mate preference for well‐adapted individuals may strengthen divergent selection and thereby facilitate adaptive divergence. We performed mate choice experiments in which we manipulated male red crossbill (Loxia curvirostra complex) feeding rates. Using association time as a proxy for preference, we found that females preferred faster foragers, which reinforces natural selection because poorly adapted males would be less likely to obtain a mate as well as less likely to survive. Although theoretical models predict direct preference for adaptation and performance, to the best of our knowledge this experiment provides the first evidence of individuals directly assessing feeding performance in mate choice. In species where assessing the ecological adaptation of potential mates is possible, females may gain fitness benefits from choosing a well‐adapted mate directly or indirectly, promoting the use of information about ecological adaptation in mate choice.  相似文献   

17.
The fitness effects of mutations on a given genotype are rarely constant across environments to which this genotype is more or less adapted, that is, between more or less stressful conditions. This can have important implications, especially on the evolution of ecological specialization. Stress is thought to increase the variance of mutations' fitness effects, their average, or the number of expressed mutations. Although empirical evidence is available for these three mechanisms, their relative magnitude is poorly understood. In this paper, we propose a simple approach to discriminate between these mechanisms, using a survey of empirical measures of mutation effects in contrasted environments. This survey, across various species and environments, shows that stress mainly increases the variance of mutations' effects on fitness, with a much more limited impact on their average effect or on the number of expressed mutations. This pattern is consistent with a simple model in which fitness is a Gaussian function of phenotypes around an environmentally determined optimum. These results suggest that a simple, mathematically tractable landscape model may not be quantitatively as unrealistic as previously suggested. They also suggest that mutation parameter estimates may be strongly biased when measured in stressful environments.  相似文献   

18.
Experimental studies demonstrate the existence of phenotypic diversity despite constant genotype and environment. Theoretical models based on a single phenotypic character predict that during an adaptation event, phenotypic noise should be positively selected far from the fitness optimum because it increases the fitness of the genotype, and then be selected against when the population reaches the optimum. It is suggested that because of this fitness gain, phenotypic noise should promote adaptive evolution. However, it is unclear how the selective advantage of phenotypic noise is linked to the rate of evolution, and whether any advantage would hold for more realistic, multidimensional phenotypes. Indeed, complex organisms suffer a cost of complexity, where beneficial mutations become rarer as the number of phenotypic characters increases. Using a quantitative genetics approach, we first show that for a one-dimensional phenotype, phenotypic noise promotes adaptive evolution on plateaus of positive fitness, independently from the direct selective advantage on fitness. Second, we show that for multidimensional phenotypes, phenotypic noise evolves to a low-dimensional configuration, with elevated noise in the direction of the fitness optimum. Such a dimensionality reduction of the phenotypic noise promotes adaptive evolution and numerical simulations show that it reduces the cost of complexity.  相似文献   

19.
The fixation of a beneficial mutation represents the first step in adaptation, and the average effect of such mutations is therefore a fundamental property of evolving populations. It is nevertheless poorly characterized because the rarity of beneficial mutations makes it difficult to obtain reliable estimates of fitness. We obtained 68 genotypes each containing a single fixed beneficial mutation from experimental populations of Pseudomonas fluorescens, evolving in medium with serine as the sole carbon source and estimated the selective advantage of each by competition with the ancestor. The distribution of selection coefficients is modal and closely resembles the Weibull distribution. The average selection coefficient (2.1) and beneficial mutation rate (3.8x10(-8)) are high relative to previous studies, possibly because the ancestral population grows poorly in serine-limited medium. Our experiment suggests that the initial stages of adaptation to stressful environments will involve the substitution of mutations with large effect on fitness.  相似文献   

20.
Determining the probability of fixation of beneficial mutations is critically important for building predictive models of adaptive evolution. Despite considerable theoretical work, models of fixation probability have stood untested for nearly a century. However, recent advances in experimental and theoretical techniques permit the development of models with testable predictions. We developed a new model for the probability of surviving genetic drift, a major component of fixation probability, for novel beneficial mutations in the fungus Aspergillus nidulans, based on the life-history characteristics of its colony growth on a solid surface. We tested the model by measuring the probability of surviving drift in 11 adapted strains introduced into wild-type populations of different densities. We found that the probability of surviving drift increased with mutant invasion fitness, and decreased with wild-type density, as expected. The model accurately predicted the survival probability for the majority of mutants, yielding one of the first direct tests of the extinction probability of beneficial mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号