首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of infectious diseases is known to affect epidemiological dynamics, but, for some viruses and bacteria, this evolution also takes place inside a host during the course of an infection. I develop an original approach to study intrahost evolutionary dynamics of quantitative disease traits. This approach can be expressed mathematically using the ‘Price equation’ framework recently developed in evolutionary epidemiology. This framework combines population genetics and within-host population dynamics models to identify trade-offs that affect disease intrahost evolution and to predict short-term evolutionary dynamics of life-history traits. I show that this can be applied to study the evolution of viruses competing for host cells or to study the coevolution between parasites and the immune system of the host. This framework can also easily incorporate experimental data. Studying intrahost evolutionary dynamics provides insight at the within-host level, because it allows us to better understand the course of chronic infections, and at the epidemiological level, because it helps to study multi-scale evolutionary processes. This framework can be used to address important biological issues, from immune escape to disease evolutionary response to treatments.  相似文献   

2.
How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence.  相似文献   

3.
Multiple pathogenic infections can influence disease transmission and virulence, and have important consequences for understanding the community ecology and epidemiology of host-pathogen interactions. Here the population and evolutionary dynamics of a host-pathogen interaction with free-living stages are explored in the presence of a non-lethal synergist that hosts must tolerate. Through the coupled effects on pathogen transmission, host mass gain and allometry it is shown how investing in tolerance to a non-lethal synergist can lead to a broad range of different population dynamics. The effects of the synergist on pathogen fitness are explored through a series of life-history trait trade-offs. Coupling trade-offs between pathogen yield and pathogen speed of kill and the presence of a synergist favour parasites that have faster speeds of kill. This evolutionary change in pathogen characteristics is predicted to lead to stable population dynamics. Evolutionary analysis of tolerance of the synergist (strength of synergy) and lethal pathogen yield show that decreasing tolerance allows alternative pathogen strategies to invade and replace extant strategies. This evolutionary change is likely to destabilise the host-pathogen interaction leading to population cycles. Correlated trait effects between speed of kill and tolerance (strength of synergy) show how these traits can interact to affect the potential for the coexistence of multiple pathogen strategies. Understanding the consequences of these evolutionary relationships is important for the both the evolutionary and population dynamics of host-pathogen interactions.  相似文献   

4.
Most theory on the evolution of virulence is based on a game-theoretic approach. One potential shortcoming of this approach is that it does not allow the prediction of the evolutionary dynamics of virulence. Such dynamics are of interest for several reasons: for experimental tests of theory, for the development of useful virulence management protocols, and for understanding virulence evolution in situations where the epidemiological dynamics never reach equilibrium and/or when evolutionary change occurs on a timescale comparable to that of the epidemiological dynamics. Here we present a general theory similar to that of quantitative genetics in evolutionary biology that allows for the easy construction of models that include both within-host mutation as well as superinfection and that is capable of predicting both the short- and long-term evolution of virulence. We illustrate the generality and intuitive appeal of the theory through a series of examples showing how it can lead to transparent interpretations of the selective forces governing virulence evolution. It also leads to novel predictions that are not possible using the game-theoretic approach. The general theory can be used to model the evolution of other pathogen traits as well.  相似文献   

5.
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host’s immune system influences the pathogen’s transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence–transmission trade-offs and evolution in vector-borne pathogen–host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the \({\mathcal {R}}_0\) maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen \({\mathcal {R}}_0\), but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.  相似文献   

6.
A series of laboratory selection experiments onDrosophila melanogaster over the past two decades has provided insights into the specifics of life-history tradeoffs in the species and greatly refined our understanding of how ecology and genetics interact in life-history evolution. Much of what has been learnt from these studies about the subtlety of the microevolutionary process also has significant implications for experimental design and inference in organismal biology beyond life-history evolution, as well as for studies of evolution in the wild. Here we review work on the ecology and evolution of life-histories in laboratory populations ofD. melanogaster, emphasizing how environmental effects on life-history-related traits can influence evolutionary change. We discuss life-history tradeoffs—many unexpected—revealed by selection experiments, and also highlight recent work that underscores the importance to life-history evolution of cross-generation and cross-life-stage effects and interactions, sexual antagonism and sexual dimorphism, population dynamics, and the possible role of biological clocks in timing life-history events. Finally, we discuss some of the limitations of typical selection experiments, and how these limitations might be transcended in the future by a combination of more elaborate and realistic selection experiments, developmental evolutionary biology, and the emerging discipline of phenomics.  相似文献   

7.
8.
Trade-offs among life-history traits are central to evolutionary theory. In quantitative genetic terms, trade-offs may be manifested as negative genetic covariances relative to the direction of selection on phenotypic traits. Although the expression and selection of ecologically important phenotypic variation are fundamentally multivariate phenomena, the in situ quantification of genetic covariances is challenging. Even for life-history traits, where well-developed theory exists with which to relate phenotypic variation to fitness variation, little evidence exists from in situ studies that negative genetic covariances are an important aspect of the genetic architecture of life-history traits. In fact, the majority of reported estimates of genetic covariances among life-history traits are positive. Here we apply theory of the genetics and selection of life histories in organisms with complex life cycles to provide a framework for quantifying the contribution of multivariate genetically based relationships among traits to evolutionary constraint. We use a Bayesian framework to link pedigree-based inference of the genetic basis of variation in life-history traits to evolutionary demography theory regarding how life histories are selected. Our results suggest that genetic covariances may be acting to constrain the evolution of female life-history traits in a wild population of red deer Cervus elaphus: genetic covariances are estimated to reduce the rate of adaptation by about 40%, relative to predicted evolutionary change in the absence of genetic covariances. Furthermore, multivariate phenotypic (rather than genetic) relationships among female life-history traits do not reveal this constraint.  相似文献   

9.
Trade-offs between different components of a pathogen''s replication and transmission cycle are thought to be common. A number of studies have identified trade-offs that emerge across scales, reflecting the tension between strategies that optimize within-host proliferation and large-scale population spread. Most of these studies are theoretical in nature, with direct experimental tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian influenza A viruses across scales, focusing on the phenotype of temperature-dependent viral persistence. Taking advantage of a unique dataset that reports both environmental virus decay rates and strain-specific viral kinetics from duck challenge experiments, we show that the temperature-dependent environmental decay rate of a strain does not impact within-host virus load. Hence, for this phenotype, the scales of within-host infection dynamics and between-host environmental persistence do not seem to interact: viral fitness may be optimized on each scale without cross-scale trade-offs. Instead, we confirm the existence of a temperature-dependent persistence trade-off on a single scale, with some strains favouring environmental persistence in water at low temperatures while others reduce sensitivity to increasing temperatures. We show that this temperature-dependent trade-off is a robust phenomenon and does not depend on the details of data analysis. Our findings suggest that viruses might employ different environmental persistence strategies, which facilitates the coexistence of diverse strains in ecological niches. We conclude that a better understanding of the transmission and evolutionary dynamics of influenza A viruses probably requires empirical information regarding both within-host dynamics and environmental traits, integrated within a combined ecological and within-host framework.  相似文献   

10.
Many viruses and bacteria are known to evolve rapidly over the course of an infection. However, epidemiological studies generally assume that within-host evolution is an instantaneous process. We argue that the dynamics of within-host evolution has implications at the within-host and at the between-host levels. We first show that epidemiologists should consider within-host evolution, notably because it affects the genotype of the pathogen that is transmitted. We then present studies that investigate evolution at the within-host level and examine the extent to which these studies can help to understand infection traits involved in the epidemiology (e.g. transmission rate, virulence, recovery rate). Finally, we discuss how new techniques for data acquisition can open new perspectives for empirical and theoretical research.  相似文献   

11.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

12.
Basolo AL 《Biology letters》2008,4(2):200-203
Understanding life-history evolution requires knowledge about genetic interactions, physiological mechanisms and the nature of selection. For platyfish, Xiphophorus maculatus, extensive information is available about genetic and physiological mechanisms influencing life-history traits. In particular, alleles at the pituitary locus have large and antagonistic effects on age and size at sexual maturation. To examine how predation affects the evolution of these antagonistic traits, I examined pituitary allele evolution in experimental populations differing in predation risk. A smaller size, earlier maturation allele increased in frequency when predators were absent, while a larger size, later maturation allele increased in frequency when predators were present. Thus, predation favours alleles for larger size, at the cost of later maturation and reproduction. These findings are interesting for several reasons. First, predation is often predicted to favour early reproduction at smaller sizes. Second, few studies have shown how selection acts on alleles that affect age and size at sexual maturation. Finally, many studies assume that trade-offs between these life-history traits result from antagonistic pleiotropy, with alleles that positively affect one trait negatively affecting another, yet this is rarely known. This study unequivocally demonstrates that genetically based trade-offs affect life-history evolution in platyfish.  相似文献   

13.
Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm) caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.  相似文献   

14.
15.
The negative co-variation of life-history traits such as fecundity and lifespan across species suggests the existence of ubiquitous trade-offs. Mechanistically, trade-offs result from the need to differentially allocate limited resources to traits like reproduction versus self-maintenance, with selection favoring the evolution of optimal allocation mechanism. Here I discuss the physiological (endocrine) mechanisms that underlie optimal allocation rules and how such rules evolve. The hormone testosterone may mediate life-history trade-offs due to its pleiotropic actions in male vertebrates. Conservation in the actions of testosterone in vertebrates has prompted the 'evolutionary constraint hypothesis,' which assumes that testosterone signaling mechanisms and male traits evolve as a unit. This hypothesis implies that the actions of testosterone are similar across sexes and species, and only the levels of circulating testosterone concentrations change during evolution. In contrast, the 'evolutionary potential hypothesis' proposes that testosterone signaling mechanisms and male traits evolve independently. In the latter scenario, the linkage between hormone and traits itself can be shaped by selection, leading to variation in trade-off functions. I will review recent case studies supporting the evolutionary potential hypothesis and suggest micro-evolutionary experiments to unravel the mechanistic basis of life-history evolution.  相似文献   

16.
Natural selection acts on virus populations at two distinct but interrelated levels: within individual hosts and between them. Studies of the evolution of virulence typically focus on selection acting at the epidemiological or between-host level and demonstrate the importance of trade-offs between disease transmission and virulence rates. Within-host studies reach similar conclusions regarding trade-offs between transmission and virulence at the level of individual cells. Studies which examine selection at both scales assume that between- and within-host selection are necessarily in conflict. We explicitly examine these ideas and assumptions using a model of within-host viral dynamics nested within a model of between-host disease dynamics. Our approach allows us to evaluate the direction of selection at the within- and between-host levels and identify situations leading to conflict and accord between the two levels of selection.  相似文献   

17.
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.  相似文献   

18.
Dispersal polymorphism and mutation play significant roles during biological invasions, potentially leading to evolution and complex behaviour such as accelerating or decelerating invasion fronts. However, life-history theory predicts that reproductive fitness—another key determinant of invasion dynamics—may be lower for more dispersive strains. Here, we use a mathematical model to show that unexpected invasion dynamics emerge from the combination of heritable dispersal polymorphism, dispersal-fitness trade-offs, and mutation between strains. We show that the invasion dynamics are determined by the trade-off relationship between dispersal and population growth rates of the constituent strains. We find that invasion dynamics can be ‘anomalous’ (i.e. faster than any of the strains in isolation), but that the ultimate invasion speed is determined by the traits of, at most, two strains. The model is simple but generic, so we expect the predictions to apply to a wide range of ecological, evolutionary, or epidemiological invasions.  相似文献   

19.
The adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.Subject terms: Population genetics, Plant sciences, Molecular evolution, Fungi  相似文献   

20.
Evolution during biological invasion may occur over contemporary timescales, but the rate of evolutionary change may be inhibited by a lack of standing genetic variation for ecologically relevant traits and by fitness trade-offs among them. The extent to which these genetic constraints limit the evolution of local adaptation during biological invasion has rarely been examined. To investigate genetic constraints on life-history traits, we measured standing genetic variance and covariance in 20 populations of the invasive plant purple loosestrife (Lythrum salicaria) sampled along a latitudinal climatic gradient in eastern North America and grown under uniform conditions in a glasshouse. Genetic variances within and among populations were significant for all traits; however, strong intercorrelations among measurements of seedling growth rate, time to reproductive maturity and adult size suggested that fitness trade-offs have constrained population divergence. Evidence to support this hypothesis was obtained from the genetic variance-covariance matrix (G) and the matrix of (co)variance among population means (D), which were 79.8% (95% C.I. 77.7-82.9%) similar. These results suggest that population divergence during invasive spread of L. salicaria in eastern North America has been constrained by strong genetic correlations among life-history traits, despite large amounts of standing genetic variation for individual traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号