首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We generated transgenic rice plants (Oryza sativa cv. Dongjin) over-expressing human protoporphyrinogen IX oxidase (PPO) with the aim to increase mitochondrial PPO activity and confer herbicide resistance (Lee et al., Pestic Biochem Physiol 80:65-74, 2004). The transgenic plants showed during further leaf development the formation of severe necrotic spots and growth retardation. Several experiments were performed to examine the reasons for the formation of necrotic leaf lesions. Human PPO is normally located in mitochondria. An in vitro organellar import experiment revealed translocation of human PPO into pea chloroplasts, but not into mitochondria. Using a specific antibody raised against human PPO confirmed its plastidic localisation. The heme and chlorophyll contents were lower in necrotic leaves than wild-type leaves. Interestingly, mature and necrotic leaves of 12-week-old transgenic plants contained up to 14- and 24-fold more protoporphyrin IX, respectively, than mature wild-type leaves. Enhanced levels of Mg-Protoporphyrin IX, Mg-Protoporphyrin IX monomethyl ester and protochlorophyllide were concurrently observed in transgenic plants relative to wild type. Accumulated porphyrins and Mg-porphyrins likely act as photosensitizers and cause high formation of the reactive oxygen species. These high levels of tetrapyrrole intermediates correlated with increased rates of 5-aminolevulinic acid synthesis in transgenic plants. Tetrapyrrole-induced photooxidation was confirmed by increased lipid peroxidation and subsequent cell death. The transgenic phenotype is the consequence of a highly modified tetrapyrrole metabolism due to additional expression of human PPO. A possible regulatory role of PPO in graminaceous seedlings is discussed.  相似文献   

2.
Protoporphyrinogen oxidase (Protox) is the last shared enzyme of the porphyrin pathway. As a continuation of our previous work in which the transgenic rice plants expressing the Bacillus subtilis Protox in the cytoplasm or the plastid showed resistance to diphenyl ether herbicide, this study was undertaken to identify the effects of tertapyrrole biosynthesis in these transgenic rice plants. The transgenic plants either targeted into plastids or expressed in cytoplasm showed higher Protox activity than wild-type plants did. Photosynthetic activity, measured as a quantum yield of photosystem II, was slightly higher in transgenic plants than in wild-type plants, but chlorophyll contents were not significantly different between transgenic and wild-type plants. As for porphyrin biosynthesis, both cytoplasm-expressed and plastid-targeted transgenic plants showed increased synthesis of aminolevulinic acid, Mg-Proto IX, and protoheme in comparison to wild-type plants whereas synthesis of protoporphyrin IX was similar for wild-type and transgenic plants. These results indicate that either cytoplasm or plastid expression of B. subtilis Protox in rice can upregulate the porphyrin pathway leading to increase in photosynthetic efficiency in plants.  相似文献   

3.
以河北杨(Populus hopeiensis)为材料, 研究拟南芥(Arabidopsis thaliana)油菜素内酯(BR)生物合成酶基因DAS5对其生长表型、生物量及抗旱性的影响。结果表明: (1) 转DAS5基因河北杨植株的根长、地径、叶柄及叶片长度均显著大于野生型植株, 且地上、地下部分干重及根冠比显著高于野生型, 其拥有发达的根系; (2) 在干旱胁迫下, 转DAS5基因河北杨植株失水褪绿速度较野生型植株缓慢, 在复水后转基因植株能够较早较好地恢复活力, 萌发较多的新幼芽且长势良好; (3)控水期间, 转基因河北杨的相对生长率显著高于野生型, 且随着干旱胁迫程度的加剧, 其可溶性糖含量、游离脯氨酸含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性均显著高于野生型。实验结果表明, 与野生型相比, 转基因植株具有较高的生长量与较强的抗干旱胁迫能力, 说明来自拟南芥的BR生物合成酶基因DAS5可以显著增加河北杨的生长量并在抵御干旱胁迫机制中发挥重要作用。  相似文献   

4.
About one-third of the world's rice area is in rain-fed lowlands and most are prone to water shortage. The identification of genes imparting tolerance to drought in the model cereal plant, rice, is an attractive strategy to engineer improved drought tolerance not only rice but other cereals as well. It is demonstrated that RNAi-mediated disruption of a rice farnesyltransferase/squalene synthase (SQS) by maize squalene synthase improves drought tolerance at both the vegetative and reproductive stages. Twenty-day-old seedlings of wild type (Nipponbare) and seven independent events of transgenic RNAi lines showed no difference in morphology. When subjected to water stress for a period of 32 d under growth chamber conditions, transgenic positives showed delayed wilting, conserved more soil water, and improved recovery. When five independent events along with wild-type plants were subjected to drought at the reproductive stage under greenhouse conditions, the transgenic plants lost water more slowly compared with the wild type, through reduced stomatal conductance and the retention of high leaf relative water content (RWC). After 28 d of slow progressive soil drying, transgenic plants recovered better and flowered earlier than wild-type plants. The yield of water-stressed transgenic positive plants ranged from 14-39% higher than wild-type plants. When grown in plates with Yoshida's nutrient solution with 1.2% agar, transgenic positives from three independent events showed increased root length and an enhanced number of lateral roots. The RNAi-mediated inactivation produced reduced stomatal conductance and subsequent drought tolerance.  相似文献   

5.
Osmotin has been implicated in conferring tolerance to drought and salt stress in plants. We have over-expressed the osmotin gene under the control of constitutive CaMV 35S promoter in transgenic tobacco, and studied involvement of the protein in imparting tolerance to salinity and drought stress. The transgenic plants exhibited retarded leaf senescence and improved germination on a medium containing 200mM NaCl. Further, the transgenics maintained higher leaf relative water content (RWC), leaf photosynthesis and free proline content than the wild type plants during water stress and after recovery from stress. When subjected to salt stress (200mM NaCl), the transgenic plants accumulated significantly more proline than the wild type plants. These results suggest the involvement of the osmotin-induced increase in proline in imparting tolerance to salinity and drought stress in transgenic plants over-expressing the osmotin gene.  相似文献   

6.
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.  相似文献   

7.
8.
Sweetpotato is a significant crop which is widely cultivated particularly in the developing countries with high and stable yield. However, drought stress is a major limiting factor that antagonistically influences the crop’s productivity. Dehydration stress caused by drought causes aggregation of reactive oxygen species (ROS) in plants, and aldose reductases are first-line safeguards against ROS caused by oxidative stress. In the present study, we generated transgenic sweetpotato plants expressing aldose reductase, XvAld1 isolated from Xerophyta viscosa under the control of a stress-inducible promoter via Agrobacterium-mediated transformation. Our results demonstrated that the transgenic sweetpotato lines displayed significant enhanced tolerance to simulated drought stress and enhanced recuperation after rehydration contrasted with wild-type plants. In addition, the transgenic plants exhibited improved photosynthetic efficiency, higher water content and more proline accumulation under dehydration stress conditions compared with wild-type plants. These results demonstrate that exploiting the XvAld1 gene is not only a compelling and attainable way to improve sweetpotato tolerance to drought stresses without causing any phenotypic imperfections but also a promising gene candidate for more extensive crop improvement.  相似文献   

9.
Drought and salt are major abiotic stresses that adversely affect crop productivity. Thus, identification of factors that confer resistance to these stresses would pave way to increasing agricultural productivity. When grown on soil in green house longer than 5 weeks, transgenic Arabidopsis plants that overexpress an ATP‐binding cassette (ABC) transporter, AtABCG36/AtPDR8, produced higher shoot biomass and less chlorotic leaves than the wild‐type. We investigated whether the improved growth of AtABCG36‐overexpressing plants was due to their improved resistance to abiotic stresses, and found that AtABCG36‐overexpressing plants were more resistant to drought and salt stress and grew to higher shoot fresh weight (FW) than the wild‐type. On the contrary, T‐DNA insertional knockout lines were more sensitive to drought stress than wild‐type and were reduced in shoot FW. To understand the mechanism of enhanced salt and drought resistance of the AtABCG36 overexpressing plants, we measured sodium contents and found that AtABCG36 overexpressing plants were lower in sodium content than the wild‐type. Our data suggest that AtABCG36 contributes to drought and salt resistance in Arabidopsis by a mechanism that includes reduction of sodium content in plants.  相似文献   

10.
11.
Transgenic lines of creeping bent grass were generated by Agrobacterium-mediated transformation with the VuNCED1 which was cloned from cow pea has a homology to 9-cis-epoxycarotenoid dioxygenase, which is supposed to be involved in abscisic acid (ABA) biosynthesis. ABA, a cleavage product of carotenoids, is involved in stress responses in plants. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxycarotenoids, the first committed step of ABA biosynthesis. Molecular analyses of transgenic lines as performed by Southern hybridization genomic DNA-PCR revealed integration of the VuNCED1. Challenge studies performed with transgenic plants by exposure to salt stress (up to 10 dS m−1) and water stress (up to 75%) for 10 weeks, revealed that more than 50% of the transgenic plants could survive NaCl and drought stress whereas wild-type was not. ABA levels were measured under drought and normal conditions, endogenous ABA was dramatically increased by drought and NaCl stress in transgenic plants. These results indicate that it is possible to manipulate ABA levels in plants by over expressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels. Chenna Reddy Aswath and Sun Hyung Kim - First two authors contributed equally to this work  相似文献   

12.
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress, but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to 25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine.  相似文献   

13.
The effect of drought stress at supraoptimal temperature on free proline and polyamine levels was compared in wild type and transgenic soybean (Glycine max cv. Ibis) plants having increased proline levels. Since glutamate and arginine are precursors of both proline and polyamines, it was assumed that the genetic manipulation of proline levels would also affect the polyamine levels. The proline and spermine concentrations increased, while the putrescine concentration generally decreased or did not change after the treatments in both genotypes. Following drought higher proline and lower spermine levels were detected in the transgenic plants compared to the wild type ones, which could be explained by the increased use of their common precursors for proline biosynthesis in the transgenic plants.  相似文献   

14.
Increase of glycinebetaine synthesis improves drought tolerance in cotton   总被引:1,自引:0,他引:1  
The tolerance to drought stress of the homozygous transgenic cotton (Gossypium hirsutum L.) plants with enhanced glycinebetaine (GB) accumulation was investigated at three development stages. Among the five transgenic lines investigated, lines 1, 3, 4, and 5 accumulated significantly higher levels of GB than the wild-type (WT) plants either before or after drought stress, and the transgenic plants were more tolerant to drought stress than the wild-type counterparts from young seedlings to flowering plants. Under drought stress conditions, transgenic lines 1, 3, 4, and 5 had higher relative water content, increased photosynthesis, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation than WT plants. The GB levels in transgenic plants were positively correlated with drought tolerance under water stress. The results suggested that GB may not only protect the integrity of the cell membrane from drought stress damage, but also be involved in OA in transgenic cotton plants. Most importantly, the seedcotton yield of transgenic line 4 was significantly greater than that of WT plants after drought stress, which is of great value in cotton production.  相似文献   

15.
We investigated the role that manganese superoxide dismutase (MnSOD), an important antioxidant enzyme, may play in the drought tolerance of rice. MnSOD from pea (Pisum sativum) under the control of an oxidative stress-inducible SWPA2 promoter was introduced into chloroplasts of rice (Oryza sativa) by Agrobacterium-mediated transformation to develop drought-tolerant rice plants. Functional expression of the pea MnSOD in transgenic rice plants (T1) was revealed under drought stress induced by polyethylene glycol (PEG) 6000. After PEG treatment the transgenic leaf slices showed reduced electrolyte leakage compared to wild type (WT) leaf slices, whether they were exposed to methyl viologen (MV) or not, suggesting that transgenic plants were more resistant to MV- or PEG-induced oxidative stress. Transgenic plants also exhibited less injury, measured by net photosynthetic rate, when treated with PEG. Our data suggest that SOD is a critical component of the ROS scavenging system in plant chloroplasts and that the expression of MnSOD can improve drought tolerance in rice.  相似文献   

16.
转拟南芥P5CS1基因增强羽衣甘蓝的耐旱性   总被引:1,自引:0,他引:1  
为提高羽衣甘蓝的耐旱性,本文将拟南芥Δ1-吡咯啉-5-羧酸合成酶(P5CS1)基因经农杆菌介导转入羽衣甘蓝植株中,检测转基因株系与野生型植株在干旱胁迫下P5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干重、鲜重和整株存活率。结果表明,在15%PEG6000渗透胁迫下,转基因植株的P5CS1基因mRNA表达量明显增加,转基因植株脯氨酸含量是野生型的2.4倍;主根长、最长侧根长、侧根数目、整株干重和鲜重均高于野生型,干重/鲜重则低于野生型,转基因植株的平均存活率为78%,极显著高于野生型。数据显示,AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐旱性。  相似文献   

17.
Efficient procedures for regeneration and Agrobacterium-mediated transformation were established for Agrostis mongolica Roshev. and generated transgenic plants tolerant to drought and heat stresses using a regulatory gene from Arabidopsis, ABF3, which controls the ABA-dependent adaptive responses. The identification and selection of regenerable and reproducible callus type was a key factor for successful transformation. The transformation efficiency was 49.2% and gfp expression was detected in hygromycin-resistant calli and stem of putative transgenic plants. The result of Southern blot analysis showed that the ABF3 transgene was stably integrated into the genome of transgenic plants. Of the five transgenic lines analyzed, single transgene integration was observed in two lines and two copy integration was observed in three transgenic lines. Northern blot analysis confirmed that ubi::ABF3 was expressed in all transgenic lines. Transgenic plants exhibited neither growth inhibition nor visible vegetative phenotypic alternations. However, both transgenic and wild-type plants were highly sterile and did not flower during 3 years of growth period in the open field under subtropical Jeju Island climate. The stomata of the transgenic plants opened less than did stomata of the wild-type plants, and water content of the transgenic leaves remained about 3–4 fold higher than observed for wild-type leaves under drought stress. The transgenic plants showed about 2 fold higher survival rates under drought stress and about 3 fold higher survival rates under heat stress when compared to wild-type plants. Thus, overexpression of the Arabidopsis ABF3 gene results in enhancement of both drought and heat stress tolerance in Agrostis mongolica Roshev.  相似文献   

18.
Late Embryogenesis Abundant (LEA) proteins are associated with tolerance to water-related stress. A wheat (Triticum durum) group 2 LEA proteins, known also as dehydrin (DHN-5), has been previously shown to be induced by salt and abscisic acid (ABA). In this report, we analyze the effect of ectopic expression of Dhn-5 cDNA in Arabidopsis thaliana plants and their response to salt and osmotic stress. When compared to wild type plants, the Dhn-5 transgenic plants exhibited stronger growth under high concentrations of NaCl or under water deprivation, and showed a faster recovery from mannitol treatment. Leaf area and seed germination rate decreased much more in wild type than in transgenic plants subjected to salt stress. Moreover, the water potential was more negative in transgenic than in wild type plants. In addition, the transgenic plants have higher proline contents and lower water loss rate under water stress. Also, Na+ and K+ accumulate to higher contents in the leaves of the transgenic plants. Our data strongly support the hypothesis that Dhn-5, by its protective role, contributes to an improved tolerance to salt and drought stress through osmotic adjustment.  相似文献   

19.
Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in transgenic plants carrying genes coding for osmoprotectants controlled by constitutive promoters. We report here the effects of water deficit on wheat plants transformed with the Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA that encodes the key regulatory enzyme in proline biosynthesis, under the control of a stress-induced promoter complex-AIPC. Transgenic wheat plants submitted to 15 days of water shortage presented a distinct response. We have found that drought resulted in the accumulation of proline. The tolerance to water deficit observed in transgenic plants was mainly due to protection mechanisms against oxidative stress and not caused by osmotic adjustment.  相似文献   

20.
Drought is a major environmental stress that limits cotton (Gossypium hirsutum L.) production worldwide. TaMnSOD plays a crucial role as a peroxidation scavenger. In this study, TaMnSOD cDNA of Tamarix albiflonum was overexpressed in the cotton cultivar fy11 by Agrobacterium tumefaciens-mediated transformation. The transformed plants were assessed by gDNA PCR, RT-PCR and DNA gel blot analysis. The physiological and biochemical characters of two independent transgenic lines and control plants were tested and compared, and the morphological traits (biomass, root and lateral root length, leaf number) were also detected after recovery from water-withholding stress. When water was withheld from pot-grown 6-week-old seedlings for 18 days (watering to 8 % of field capacity), transgenic cotton plants accumulated more proline and soluble sugar than wild-type plants (WT). The activity of antioxidant enzymes such as superoxide dismutase and peroxidase was enhanced in transgenic plants under drought stress. Cell membrane integrity was also considerably improved under water stress, as indicated by reduced malondialdehyde content relative to control plants. Furthermore, net photosynthesis, stomatal conductance and transpiration rate were increased in transgenic plants compared with wild type. Transgenic cotton showed increases in biomass as well as root and leaf systems compared with WT after 2 weeks recovery from stress. These results suggest that TaMnSOD transgenic cotton plants acquired improved drought tolerance through enhanced development of the root and leaf system and the regulation of superoxide scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号