首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Yamazawa  H Takeshima  T Sakurai  M Endo    M Iino 《The EMBO journal》1996,15(22):6172-6177
In excitable cells membrane depolarization is translated into intracellular Ca2+ signals. The ryanodine receptor (RyR) amplifies the Ca2+ signal by releasing Ca2+ from the intracellular Ca2+ store upon receipt of a message from the dihydropyridine receptor (DHPR) on the plasma membrane in striated muscle. There are two distinct mechanisms for the amplification of Ca2+ signalling. In cardiac cells depolarization-dependent Ca2+ influx through DHPR triggers Ca2+-induced Ca2+ release via RyR, while in skeletal muscle cells a voltage-induced change in DHPR is thought to be mechanically transmitted, without a requirement for Ca2+ influx, to RyR to cause it to open. In expression experiments using mutant skeletal myocytes lacking an intrinsic subtype of RyR (RyR-1), we demonstrate that RyR-1, but not the cardiac subtype (RyR-2), is capable of supporting skeletal muscle-type coupling. Furthermore, when RyR-2 was expressed in skeletal myocytes, we observed depolarization-independent spontaneous Ca2+ waves and oscillations, which suggests that RyR-2 is prone to regenerative Ca2+ release responses. These results demonstrate functional diversity among RyR subtypes and indicate that the subtype of RyR is the key to Ca2+ signal amplification.  相似文献   

2.
Junctophilin (JP) mediates the close contact between cell surface and intracellular membranes in muscle cells ensuring efficient excitation-contraction coupling. Here we demonstrate that disruption of triad junction structure formed by the transverse tubular (TT) invagination of plasma membrane and terminal cisternae of sarcoplasmic reticulum (SR) by reduction of JP expression leads to defective Ca2+ homeostasis in muscle cells. Using adenovirus with small hairpin interference RNA (shRNA) against both JP1 and JP2 genes, we could achieve acute suppression of JPs in skeletal muscle fibers. The shRNA-treated muscles exhibit deformed triad junctions and reduced store-operated Ca2+ entry (SOCE), which is likely due to uncoupled retrograde signaling from SR to TT. Knockdown of JP also causes a reduction in SR Ca2+ storage and altered caffeine-induced Ca2+ release, suggesting an orthograde regulation of the TT membrane on the SR Ca2+ release machinery. Our data demonstrate that JPs play an important role in controlling overall intracellular Ca2+ homeostasis in muscle cells. We speculate that altered expression of JPs may underlie some of the phenotypic changes associated with certain muscle diseases and aging.  相似文献   

3.
The expression of TRPC3 (canonical-type transient receptor potential cation channel type 3) is tightly regulated during skeletal muscle cell differentiation, and a functional interaction between TRPC3 and RyR1 [(ryanodine receptor type 1), an SR (sarcoplasmic reticulum) Ca2+-release channel] regulates the gain of SR Ca2+ release during EC (excitation-contraction) coupling. However, it has not been possible to demonstrate direct protein-protein interactions between TRPC3 and RyR1. To identify possible candidate(s) for a linker protein(s) between TRPC3 and RyR1 in skeletal muscle, in the present study we performed MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis of a cross-linked triadic protein complex from rabbit skeletal triad vesicles and co-immunoprecipitation assays using primary mouse skeletal myotubes. From these studies, we found that six triadic proteins, that are known to regulate RyR1 function and/or EC coupling [TRPC1, JP2 (junctophilin 2), homer, mitsugumin 29, calreticulin and calmodulin], interacted directly with TRPC3 in a Ca2+-independent manner. However we again found no direct interaction between TRPC3 and RyR1. TRPC1 was identified as a potential physical link between TRPC3 and RyR1, as it interacted with both TRPC3 and RyR1, and JPs showed subtype-specific interactions with both RyR1 and TRPC3 (JP1-RyR1 and JP2-TRPC3). These results support the hypothesis that TRPC3 and RyR1 are functionally engaged via linker proteins in skeletal muscle.  相似文献   

4.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   

5.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

6.
Bi-directional signaling between ryanodine receptor type 1 (RyR1) and dihydropyridine receptor (DHPR) in skeletal muscle serves as a prominent example of conformational coupling. Evidence for a physiological mechanism that upon depolarization of myotubes tightly couples three calcium channels, DHPR, RyR1, and a Ca(2+) entry channel with SOCC-like properties, has recently been presented. This form of conformational coupling, termed excitation-coupled calcium entry (ECCE) is triggered by the alpha(1s)-DHPR voltage sensor and is highly dependent on RyR1 conformation. In this report, we substitute RyR1 cysteines 4958 or 4961 within the TXCFICG motif, common to all ER/SR Ca(2+) channels, with serine. When expressed in skeletal myotubes, C4958S- and C4961S-RyR1 properly target and restore L-type current via the DHPR. However, these mutants do not respond to RyR activators and do not support skeletal type EC coupling. Nonetheless, depolarization of cells expressing C4958S- or C4961S-RyR1 triggers calcium entry via ECCE that resembles that for wild-type RyR1, except for substantially slowed inactivation and deactivation kinetics. ECCE in these cells is completely independent of store depletion, displays a cation selectivity of Ca(2+)>Sr(2+) approximately Ba(2+), and is fully inhibited by SKF-96365 or 2-APB. Mutation of other non-CXXC motif cysteines within the RyR1 transmembrane assembly (C3635S, C4876S, and C4882S) did not replicate the phenotype observed with C4958S- and C4961S-RyR1. This study demonstrates the essential role of Cys(4958) and Cys(4961) within an invariant CXXC motif for stabilizing conformations of RyR1 that influence both its function as a release channel and its interaction with ECCE channels.  相似文献   

7.
Junctional complexes between the plasma membrane and endoplasmic/sarcoplasmic reticulum are shared by excitable cells and seem to be the structural ground for cross-talk between cell-surface and intracellular ionic channels. Our current studies have identified junctophilins (JPs) as members of a novel transmembrane protein family in the junctional membrane complex. Biochemical and gene-knockout studies have suggested that JPs contribute to the formation of the junctional membrane complex by spanning the intracellular store membrane and interacting with the plasma membrane. We report here invertebrate JPs in fruit fly and nematode. Three distinct JP subtype genes are found in the mammalian genome, while a single JP gene exists in either invertebrate genome. Mammalian and invertebrate JPs share characteristic structural features, although some intervening sequences are found in invertebrate JPs. A reporter assay indicated that the JP gene is predominantly activated in muscle cells in nematode. Nematodes, in which expression of JP was inhibited by RNA-mediated interference (RNAi), showed hypolocomotion. Taking account of the cell-type-specific expression and data from previous reports, the hypolocomotion is likely to be due to the deficiency of junctional membrane structures and the resulting reduction of Ca(2+) signaling during excitation-contraction coupling in muscle cells.  相似文献   

8.
In mammalian striated muscles, ryanodine receptor (RyR), triadin, junctin, and calsequestrin form a quaternary complex in the lumen of sarcoplasmic reticulum. Such intermolecular interactions contribute not only to the passive buffering of sarcoplasmic reticulum luminal Ca2+, but also to the active Ca2+ release process during excitation-contraction coupling. Here we tested the hypothesis that specific charged amino acids within the luminal portion of RyR mediate its direct interaction with triadin. Using in vitro binding assay and site-directed mutagenesis, we found that the second intraluminal loop of the skeletal muscle RyR1 (amino acids 4860-4917), but not the first intraluminal loop of RyR1 (amino acids 4581-4640) could bind triadin. Specifically, three negatively charged residues Asp4878, Asp4907, and Glu4908 appear to be critical for the association with triadin. Using deletional approaches, we showed that a KEKE motif of triadin (amino acids 200-232) is essential for the binding to RyR1. Because the second intraluminal loop of RyR has been previously shown to contain the ion-conducting pore as well as the selectivity filter of the Ca2+ release channel, and Asp4878, Asp4907, and Glu4908 residues are predicted to locate at the periphery of the pore assembly of the channel, our data suggest that a physical interaction between RyR1 and triadin could play an active role in the overall Ca2+ release process of excitation-contraction coupling in muscle cells.  相似文献   

9.
Calcineurin is a Ca(2+) and calmodulin-dependent protein phosphatase with diverse cellular functions. Here we examined the physical and functional interactions between calcineurin and ryanodine receptor (RyR) in a C2C12 cell line derived from mouse skeletal muscle. Coimmunoprecipitation experiments revealed that the association between RyR and calcineurin exhibits a strong Ca(2+) dependence. This association involves a Ca(2+) dependent interaction between calcineurin and FK506-binding protein (FKBP12), an accessory subunit of RyR. Pretreatment with cyclosporin A, an inhibitor of calcineurin, enhanced the caffeine-induced Ca(2+) release (CICR) in C2C12 cells. This effect was similar to those of FK506 and rapamycin, two drugs known to cause dissociation of FKBP12 from RyR. Overexpression of a constitutively active form of calcineurin in C2C12 cells, DeltaCnA(391-521) (deletion of the last 131 amino acids from calcineurin), resulted in a decrease in CICR. This decrease in CICR activity was partially recovered by pretreatment with cyclosporin A. Furthermore, overexpression of an endogenous calcineurin inhibitor (cain) or an inactive form of calcineurin (DeltaCnA(H101Q)) in C2C12 cells resulted in up-regulation of CICR. Taken together, our data suggest that a trimeric-interaction among calcineurin, FKBP12, and RyR is important for the regulation of the RyR channel activity and may play an important role in the Ca(2+) signaling of muscle contraction and relaxation.  相似文献   

10.
The ryanodine receptor (RyR) is a large homotetrameric protein with a hydrophobic domain at the C-terminal end that resides in the endoplasmic reticulum (ER) or sarcoplasmic reticulum membrane and forms the conduction pore of a Ca(2+) release channel. Our previous studies showed that RyR expressed in heterologous cells localized to the ER membrane. Confocal microscopic imaging indicated that the ER retention signal is likely present within the C-terminal portion of RyR, a region that contains four putative transmembrane segments. To identify the amino acid sequence responsible for ER retention of RyR, we expressed fusion proteins containing intercellular adhesion molecule (ICAM), various fragments of RyR, and green fluorescent protein (GFP) in Chinese hamster ovary and COS-7 cells. ICAM is a plasma membrane-resident glycoprotein and serves as a reporter for protein trafficking to the cell surface membrane. Imaging analyses indicated that ICAM-GFP fusion proteins with RyR sequence preceding the four transmembrane segments, ICAM-RyR-(3661-3993)-GFP, and with RyR sequence corresponding to transmembrane segments 1, 2, and 3, ICAM-RyR-(4558-4671)-GFP and ICAM-RyR-(4830-4919)-GFP, were localized to the plasma membrane; fusion proteins containing the fourth transmembrane segment of RyR, ICAM-RyR-(4913-4943)-GFP, were retained in the ER. Biochemical assay showed that ICAM-RyR-GFP fusion proteins that target to the plasma membrane are fully glycosylated, and those retained in the intracellular membrane are core-glycosylated. Together our data indicate that amino acids 4918-4943 of RyR contain the signal sequence for ER retention of the Ca(2+) release channel.  相似文献   

11.
We have previously established that L6 skeletal muscle cell cultures display capacitative calcium entry (CCE), a phenomenon established with other cells in which Ca(2+) uptake from outside cells increases when the endoplasmic reticulum (sarcoplasmic reticulum in muscle, or SR) store is decreased. Evidence for CCE rested on the use of thapsigargin (Tg), an inhibitor of the SR CaATPase and consequently transport of Ca(2+) from cytosol to SR, and measurements of cytosolic Ca(2+). When Ca(2+) is added to Ca(2+)-free cells in the presence of Tg, the measured cytosolic Ca(2+) rises. This has been universally interpreted to mean that as SR Ca(2+) is depleted, exogenous Ca(2+) crosses the plasma membrane, but accumulates in the cytosol due to CaATPase inhibition. Our goal in the present study was to examine CCE in more detail by measuring Ca(2+) in both the SR lumen and the cytosol using established fluorescent dye techniques for both. Surprisingly, direct measurement of SR Ca(2+) in the presence of Tg showed an increase in luminal Ca(2+) concentration in response to added exogenous Ca(2+). While we were able to reproduce the conventional demonstration of CCE-an increase of Ca(2+) in the cytosol in the presence of thapsigargin-we found that this process was inhibited by the prior addition of ryanodine (Ry), which inhibits the SR Ca(2+) release channel, the ryanodine receptor (RyR). This was also unexpected if Ca(2+) enters the cytosol first. When Ca(2+) was added prior to Ry, the later was unable to exert any inhibition. This implies a competitive interaction between Ca(2+) and Ry at the RyR. In addition, we found a further paradox: we had previously found Ry to be an uncompetitive inhibitor of Ca(2+) transport through the RyR during excitation-contraction coupling. We also found here that high concentrations of Ca(2+) inhibited its own uptake, a known feature of the RyR. We confirmed that Ca(2+) enters the cells through the dihydropyridine receptor (DHPR, also known as the L-channel) by demonstrating inhibition by diltiazem. A previous suggestion to the contrary had used Mn(2+) in place of direct Ca(2+) measurements; we showed that Mn(2+) was not inhibited by diltiazem and was not capacitative, and thus not an appropriate probe of Ca(2+) flow in muscle cells. Our findings are entirely explained by a new model whereby Ca(2+) enters the SR from the extracellular space directly through a combined channel formed from the DHPR and the RyR. These are known to be in close proximity in skeletal muscle. Ca(2+) subsequently appears in the cytosol by egress through a separate, unoccupied RyR, explaining Ry inhibition. We suggest that upon excitation, the DHPR, in response to the electrical field of the plasma membrane, shifts to an erstwhile-unoccupied receptor, and Ca(2+) is released from the now open RyR to trigger contraction. We discuss how this model also resolves existing paradoxes in the literature, and its implications for other cell types.  相似文献   

12.
Eltit JM  Szpyt J  Li H  Allen PD  Perez CF 《Cell calcium》2011,49(2):128-135
Several studies have suggested that triadin (Tdn) may be a critical component of skeletal EC-coupling. However, using Tdn-null mice we have shown that triadin ablation results in no significant disruption of skeletal EC-coupling. To analyze the role of triadin in EC-coupling signaling here we used whole-cell voltage clamp and simultaneous recording of intracellular Ca2+ release to characterize the retrograde and orthograde signaling between RyR1 and DHPR in cultured myotubes. DHPR Ca2+ currents elicited by depolarization of Wt and Tdn-null myotubes displayed similar current densities and voltage dependence. However, kinetic analysis of the Ca2+ current shows that activation time constant of the slow component was slightly decreased in Tdn-null cells. Voltage-evoked Ca2+ transient of Tdn-null myotubes showed small but significant reduction in peak fluorescence amplitude but no differences in voltage dependence. This difference in Ca2+ amplitude was averted by over-expression of FKBP12.6. Our results show that bi-directional signaling between DHPR and RyR1 is preserved nearly intact in Tdn-null myotubes and that the effect of triadin ablation on Ca2+ transients appears to be secondary to the reduced FKBP12 binding capacity of RyR1 in Tdn-null myotubes. These data suggest that skeletal triadins do not play a direct role in skeletal EC-coupling.  相似文献   

13.
Junctophilins: a novel family of junctional membrane complex proteins   总被引:1,自引:0,他引:1  
Junctional complexes between the plasma membrane (PM) and endoplasmic/sarcoplasmic reticulum (ER/ SR) are a common feature of all excitable cell types and mediate cross-talk between cell surface and intracellular ion channels. We have identified the junctophilins (JPs), a novel conserved family of proteins that are components of the junctional complexes. JPs are composed of a carboxy-terminal hydrophobic segment spanning the ER/SR membrane and a remaining cytoplasmic domain that shows specific affinity for the PM. In mouse, there are at least three JP subtypes: JP-1, -2, and -3. JP-2 is abundantly expressed in the heart, and mutant mice lacking JP-2 exhibited embryonic lethality. Cardiac myocytes from the mutant mice showed deficiency of the junctional membrane complexes and abnormal Ca2+ transients. Our results suggest that JPs are important components of junctional membrane complexes.  相似文献   

14.
In skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca(2+) channel and as the voltage sensor for excitation-contraction (EC coupling), triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR alpha(1S) or beta(1a) subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit. After saponin permeabilization, the approximately 60-kD streptavidin molecule had access to the beta(1a) N and C termini and to the alpha(1S) N terminus and proximal II-III loop (residues 671-686). Steptavidin also had access to these sites after injection into living myotubes. However, sites of the alpha(1S) C terminus were either inaccessible or conditionally accessible in saponin- permeabilized myotubes, suggesting that these C-terminal regions may exist in conformations that are occluded by other proteins in PM/SR junction (e.g., RyR1). The binding of injected streptavidin to the beta(1a) N or C terminus, or to the alpha(1S) N terminus, had no effect on electrically evoked contractions. By contrast, binding of streptavidin to the proximal alpha(1S) II-III loop abolished such contractions, without affecting agonist-induced Ca(2+) release via RyR1. Moreover, the block of EC coupling did not appear to result from global distortion of the DHPR and supports the hypothesis that conformational changes of the alpha(1S) II-III loop are necessary for EC coupling in skeletal muscle.  相似文献   

15.
A model of the functional release unit (FRU) in rat cardiac muscle consisting of one dihydropyridine receptor (DHPR) and eight ryanodine receptor (RyR) channels, and the volume surrounding them, is formulated. It is assumed that no spatial [Ca2+] gradients exist in this volume, and that each FRU acts independently. The model is amenable to systematic parameter studies in which FRU dynamics are simulated at the channel level using Monte Carlo methods with Ca2+ concentrations simulated by numerical integration of a coupled system of differential equations. Using stochastic methods, Ca(2+)-induced Ca2+ release (CICR) shows both high gain and graded Ca2+ release that is robust when parameters are varied. For a single DHPR opening, the resulting RyR Ca2+ release flux is insensitive to the DHPR open duration, and is determined principally by local sarcoplasmic reticulum (SR) Ca2+ load, consistent with experimental data on Ca2+ sparks. In addition, single RyR openings are effective in triggering Ca2+ release from adjacent RyRs only when open duration is long and SR Ca2+ load is high. This indicates relatively low coupling between RyRs, and suggests a mechanism that limits the regenerative spread of RyR openings. The results also suggest that adaptation plays an important modulatory role in shaping Ca2+ release duration and magnitude, but is not solely responsible for terminating Ca2+ release. Results obtained with the stochastic model suggest that high gain and gradedness can occur by the recruitment of independent FRUs without requiring spatial [Ca2+] gradients within a functional unit or cross-coupling between adjacent functional units.  相似文献   

16.
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 > R16 > R9 > RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 > RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.  相似文献   

17.
Functional crosstalk between cell-surface and intracellular ion channels plays important roles in excitable cells and is structurally supported by junctophilins (JPs) in muscle cells. Here, we report a novel form of channel crosstalk in cerebellar Purkinje cells (PCs). The generation of slow afterhyperpolarization (sAHP) following complex spikes in PCs required ryanodine receptor (RyR)-mediated Ca(2+)-induced Ca(2+) release and the subsequent opening of small-conductance Ca(2+)-activated K(+) (SK) channels in somatodendritic regions. Despite the normal expression levels of these channels, sAHP was abolished in PCs from mutant mice lacking neural JP subtypes (JP-DKO), and this defect was restored by exogenously expressing JPs or enhancing SK channel activation. The stimulation paradigm for inducing long-term depression (LTD) at parallel fiber-PC synapses adversely established long-term potentiation in the JP-DKO cerebellum, primarily due to the sAHP deficiency. Furthermore, JP-DKO mice exhibited impairments of motor coordination and learning, although normal cerebellar histology was retained. Therefore, JPs support the Ca(2+)-mediated communication between voltage-gated Ca(2+) channels, RyRs and SK channels, which modulates the excitability of PCs and is fundamental to cerebellar LTD and motor functions.  相似文献   

18.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

19.
Mouton J  Ronjat M  Jona I  Villaz M  Feltz A  Maulet Y 《FEBS letters》2001,505(3):441-444
In striated muscles, excitation-contraction coupling is mediated by the functional interplay between dihydropyridine receptor L-type calcium channels (DHPR) and ryanodine receptor calcium-release channel (RyR). Although significantly different molecular mechanisms are involved in skeletal and cardiac muscles, bidirectional cross-talk between the two channels has been described in both tissues. In the present study using surface plasmon resonance spectroscopy, we demonstrate that both RyR1 and RyR2 can bind to structural elements of the C-terminal cytoplasmic domain of alpha(1C). The interaction is restricted to the CB and IQ motifs involved in the calmodulin-mediated Ca(2+)-dependent inactivation of the DHPR, suggesting functional interactions between the two channels.  相似文献   

20.
Canonical-type transient receptor potential cation channel type 3 (TRPC3) allows the entry of extracellular Ca2+ and Na+ into various cells. In mouse skeletal myotubes, functional interaction between TRPC3 and RyR1 (ryanodine receptor type 1/Ca2+-release channel on sarcoplasmic reticulum membrane) regulates the gain of excitation–contraction coupling. Junctophilin-2 (JP2) is a TRPC3-interacting protein in mouse skeletal myotubes. Based on these knowledge from bona-fide TRPC3-expressing cells, to identify critical binding region(s) of JP2 that participate in binding to TRPC3, various JP2 portions were subjected to co-immunoprecipitation assay with intact TRPC3 from rabbit skeletal muscle. A region covering 143 to 234 amino acids of JP2 (F1-2) was the most efficient portion binding to TRPC3. Through mutational studies, we found that the binding ability of JP2 to TRPC3 was mainly due to glutamate in the F1-2 region (E227). This substantial binding between JP2 and TRPC3 suggests that JP2 can be a regulatory protein of TRPC3 and/or TRPC3-mediated Ca2+ homeostasis in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号