首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier the catalase-insensitive formation of organic hydroperoxides (via the interaction of organic radicals produced due to redox activity of P680 (or TyrZ·) with molecular oxygen) has been found in Mn-depleted PS2 preparations (apo-WOC-PS2) by Khorobrykh et al. (Biochemistry 50:10658–10665, 2011). The present work describes a second pathway of the photoproduction of organic peroxides on the donor side of PS2. It was shown that illumination of CaCl2-treated PS2 membranes (deprived of the PS2 extrinsic proteins without removal of the Mn-containing water-oxidizing complex) (CaCl2-PS2) led to the photoproduction of highly lipophilic organic hydroperoxides (LP-OOH) (in amount corresponding to 1.5 LP-OOH per one reaction center of PS2) which significantly increased upon the addition of exogenous electron acceptor potassium ferricyanide (to 4.2 LP-OOH per one reaction center). Addition of catalase (200 U/ml) before illumination inhibited ferricyanide-induced photoproduction of hydroperoxides while no effect was obtained by adding catalase after illumination or by adding inactivated catalase before illumination. The hydroperoxide photoproduction was inhibited by the addition of exogenous electron donor for PS2, diphenylcarbazide or diuron (inhibitor of the electron transfer in PS2). The addition of exogenous hydrogen peroxide to the CaCl2-PS2 led to the production of highly lipophilic organic hydroperoxides in the dark (3.2 LP-OOH per one reaction center). We suggest that the photoproduction of highly lipophilic organic hydroperoxides in CaCl2-PS2 preparations occurs via redox activity of H2O2 produced on the donor side of PS2.  相似文献   

2.
A novel fluorescent probe, a swallow-tailed perylene derivative for detecting hydroperoxides (Spy-HP), containing perylene 3,4,9,10-tetracarboxyl bisimide as the main skeleton in the structure, was developed. Spy-HP reacted rapidly with hydroperoxides such as m-chloroperbenzoic acid (MCPBA) and cumene hydroperoxide to form its oxidized derivative, Spy-HPOx, and emitted an extremely strong fluorescence (phi approximately 1) in the visible range (lambda(ex) = 524 nm and lambda(em) = 535 nm), as the result of canceling the photoinduced electron transfer (PET) effect. The reaction between Spy-HP and hydroperoxides proceeded quantitatively in strict stoichiometry, without being affected by autoxidation or photobleaching. Because of these prominent properties, Spy-HP is expected to be a novel and useful fluorescent probe to 'spy' on hydroperoxides in biosamples.  相似文献   

3.
Hydroxyl radical (HO?) production in photosystem II (PSII) was studied by electron paramagnetic resonance (EPR) spin-trapping technique. It is demonstrated here that the exposure of PSII membranes to heat stress (40 °C) results in HO? formation, as monitored by the formation of EMPO-OH adduct EPR signal. The presence of different exogenous halides significantly suppressed the EMPO-OH adduct EPR signal in PSII membranes under heat stress. The addition of exogenous acetate and blocker of chloride channel suppressed the EMPO-OH adduct EPR signal, whereas the blocker of calcium channel did not affect the EMPO-OH adduct EPR signal. Heat-induced hydrogen peroxide (H?O?) production was studied by amplex red fluorescent assay. The presence of exogenous halides, acetate and chloride blocker showed the suppression of H?O? production in PSII membranes under heat stress. Based on our results, it is proposed that the formation of HO? under heat stress is linked to uncontrolled accessibility of water to the water-splitting manganese complex caused by the release of chloride ion on the electron donor side of PSII. Uncontrolled water accessibility to the water-splitting manganese complex causes the formation of H?O? due to improper water oxidation, which leads to the formation of HO? via the Fenton reaction under heat stress.  相似文献   

4.
Oxygen consumption in Mn-depleted photosystem II (PSII) preparations under continuous and pulsed illumination is investigated. It is shown that removal of manganese from the water-oxidizing complex (WOC) by high pH treatment leads to a 6-fold increase in the rate of O2 photoconsumption. The use of exogenous electron acceptors and donors to PSII shows that in Mn-depleted PSII preparations along with the well-known effect of O2 photoreduction on the acceptor side of PSII, there is light-induced O2 consumption on the donor side of PSII (nearly 30% and 70%, respectively). It is suggested that the light-induced O2 uptake on the donor side of PSII is related to interaction of O2 with radicals produced by photooxidation of organic molecules. The study of flash-induced O2 uptake finds that removal of Mn from the WOC leads to O2 photoconsumption with maximum in the first flash, and its yield is comparable with the yield of O2 evolution on the third flash measured in the PSII samples before Mn removal. The flash-induced O2 uptake is drastically (by a factor of 1.8) activated by catalytic concentration (5-10 μM, corresponding to 2-4 Mn per RC) of Mn2+, while at higher concentrations (> 100 μM) Mn2+ inhibits the O2 photoconsumption (like other electron donors: ferrocyanide and diphenylcarbazide). Inhibitory pre-illumination of the Mn-depleted PSII preparations (resulting in the loss of electron donation from Mn2+) leads to both suppression of flash-induced O2 uptake and disappearance of the Mn-induced activation of the O2 photoconsumption. We assume that the light-induced O2 uptake in Mn-depleted PSII preparations may reflect not only the negative processes leading to photoinhibition but also possible participation of O2 or its reactive forms in the formation of the inorganic core of the WOC.  相似文献   

5.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.  相似文献   

6.
7.
The effect of water-splitting Mn complex on light-induced redox changes of cytochrome b 559 (cyt b 559) was studied in spinach photosystem II (PSII) membranes. Photoreduction of the heme iron in the intact PSII membranes was completely suppressed by DCMU, whereas photoreduction and photooxidation of the heme iron in the Mn-depleted PSII membranes were unaffected by DCMU. Interesingly, photoreduction and photooxidation of the heme iron in the Mn-depleted PSII membranes were completely diminished by exogenous superoxide dismutase (SOD), whereas no effect of SOD on photoreduction of the heme iron was observed in the intact PSII membranes. The current work shows that the light-induced redox changes of cyt b 559 proceed via a different mechanism in the both types of PSII membranes. In the intact PSII membranes, photoreduction of the heme iron is mediated by plastoquinol. However, in the Mn-depleted PSII membranes, photoreduction and photooxidation of the heme iron are mediated by superoxide anion radical formed in PSII.  相似文献   

8.
The stable tyrosine radical YD. (tyrosine 160 in the D2 polypeptide) in photosystem II (PSII) exhibits nonexponential electron spin-lattice relaxation transients at low temperature. As previously reported, the tetranuclear Mn complex in PSII significantly enhances the spin-lattice relaxation of YD.. However, in Mn-depleted PSII membranes, the spin-lattice relaxation transients of YD. are also nonexponential, and progressive power saturation (P 1/2) experiments show that it does not behave like an isolated tyrosine radical. A model is developed to treat the interaction of two paramagnets in a rigid lattice at a fixed distance apart but with a random orientation in a magnetic field. This model describes the spin-lattice relaxation of a radical in proximity to another paramagnetic site in terms of three relaxation rate constants: the "intrinsic" relaxation rate, the relaxation rate due to scalar exchange, and the relaxation rate due to dipole-dipole interactions. The intrinsic and the scalar exchange relaxation rates are isotropic and together contribute a single rate constant to the spin-lattice relaxation transients. However, the dipolar relaxation rate is orientation dependent. Each orientation contributes a different dipolar relaxation rate constant to the net spin-lattice relaxation rate constant. The result is a superposition of single-exponential recoveries, each with a different net rate constant, causing the observed saturation-recovery transients to be non-(single)-exponential. Saturation-recovery relaxation transients of YD. are compared with those of a model tyrosine radical, generated by UV photolysis of L-tyrosine in a borate glass. From this comparison, we conclude that scalar exchange does not make a significant contribution to the spin-lattice relaxation of YD. in Mn-depleted PSII. We account for the nonexponential relaxation transients obtained from YD. in Mn-depleted PSII membranes in terms of dipolar-induced relaxation enhancement from the non-heme Fe(II). From simulations of the spin-lattice relaxation transients, we obtain the magnitude of the magnetic dipolar interaction between YD. and the non-heme Fe(II), which can be used to calculate the distance between them. Using data on the non-heme Fe(II) in the reaction center of Rhodobacter sphaeroides to model the non-heme Fe(II) in PSII, we calculate a YD.-Fe(II) distance of greater than or equal to 38 A in PSII. This agrees well with the distance predicted from the structure of the bacterial reaction center.  相似文献   

9.
T Noguchi  T Ono  Y Inoue 《Biochemistry》1992,31(26):5953-5956
The light-induced Fourier transform infrared (FT-IR) difference spectrum between the S1 and S2 states of the O2-evolving photosystem II (PSII) was obtained for the first time. Detection of an S2/S1 difference spectrum virtually free from contributions by the acceptor-side signals was achieved by employing an exogenous electron acceptor, potassium ferricyanide, to trypsin-treated PSII membranes and using one-flash excitation at 250 K. A synthetic difference spectrum obtained by adding this S2/S1 spectrum to the QA-/QA spectrum measured with Mn-depleted PSII was almost identical with the difference spectrum of the S2QA-/S1QA charge separation measured with untreated PSII. This successful simulation verifies the correctness of the S2/S1 spectrum thus obtained. The observed S2/S1 spectrum reflects the structural changes within the water-oxidizing Mn cluster upon the S1-to-S2 transition, most probably changes in vibrational modes of ligands coordinating to the Mn ion(s) that is (are) oxidized upon the S2 formation and/or changes in protein conformation. The present results demonstrate that FT-IR difference spectroscopy is a promising method to investigate the structure of the intermediates of the Mn cluster involved in photosynthetic water oxidation.  相似文献   

10.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH.) and singlet oxygen ((1)O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 degrees C). Production of OH., evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH. production. These observations reveal that OH. is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH., whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH. is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH. scavengers. This finding indicates that the production of these two species was independent and that the production of (1)O2 is not closely linked to PSII donor side.  相似文献   

11.
Reconstitution of Mn-depleted PSII particles with synthetic binuclear Mn complexes (one Mn(II)2 complex and one Mn(IV)2 complex) was examined. In both cases the electron-transfer rates in the reconstituted systems were found to be up to 75–82% of that measured in native PSII but the oxygen evolution activity remained lower (<5–40%). However, hydrogen peroxide was also produced by the reconstituted samples. These samples therefore represent a new type of reconstituted PSII that generates hydrogen peroxide as the final product in reconstituted PSII centers.  相似文献   

12.
Hydroxyl radical generation by photosystem II   总被引:1,自引:0,他引:1  
The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.  相似文献   

13.
When photosystem II (PSII) is exposed to excess light, singlet oxygen (1O2) formed by the interaction of molecular oxygen with triplet chlorophyll. Triplet chlorophyll is formed by the charge recombination of triplet radical pair 3[P680•+Pheo•−] in the acceptor-side photoinhibition of PSII. Here, we provide evidence on the formation of 1O2 in the donor side photoinhibition of PSII. Light-induced 1O2 production in Tris-treated PSII membranes was studied by electron paramagnetic resonance (EPR) spin-trapping spectroscopy, as monitored by TEMPONE EPR signal. Light-induced formation of carbon-centered radicals (R) was observed by POBN-R adduct EPR signal. Increased oxidation of organic molecules at high pH enhanced the formation of TEMPONE and POBN-R adduct EPR signals in Tris-treated PSII membranes. Interestingly, the scavenging of R by propyl gallate significantly suppressed 1O2. Based on our results, it is concluded that 1O2 formation correlates with R formation on the donor side of PSII due to oxidation of organic molecules (lipids and proteins) by long-lived P680•+/TyrZ. It is proposed here that the Russell mechanism for the recombination of two peroxyl radicals formed by the interaction of R with molecular oxygen is a plausible mechanism for 1O2 formation in the donor side photoinhibition of PSII.  相似文献   

14.
Reduction of hydrogen peroxide and organic peroxides (t-butyl hydroperoxide and linoleic acid hydroperoxide) was achieved with homovanillic acid as hydrogen donor in the presence of the triethylenetetramine-Fe3+ complex. By the catalytic action of this complex, homovanillic acid is oxidized to its fluorescent dimer. Based on this reaction a fluorometric method for the measurement of the hydroperoxides mentioned above is described. The method can be extended to the determination of substrate-enzyme systems that produce hydrogen peroxide, e.g., glucose-glucose oxidase. The method allows the determination of substances such as hydrogen peroxide and t-butyl hydroperoxide with an accuracy and precision of less than 3%. Glucose can be determined with similar precision and an accuracy of 4.7%.  相似文献   

15.
To further characterize the role of D1-His190 in the oxidation of tyrosine Y(Z) in photosystem II, the pH dependence of P(680)(*)()(+) reduction was measured in H190A and Mn-depleted wild-type PSII particles isolated from the cyanobacterium, Synechocystis sp. PCC 6803. Measurements were conducted in the presence and absence of imidazole and other small organic bases. In H190A PSII particles, rapid reduction of P(680)(*)()(+) attributed to electron transfer from Y(Z) increased dramatically above pH 9, with an apparent pK(A) of approximately 10.3. In the presence of ethanolamine and imidazole, this dramatic increase occurred at lower pH values, with the efficiency of Y(Z) oxidation correlating with the solution pK(A) value of the added base. We conclude that the pK(A) of Y(Z) is approximately 10.3 in D1-H190A PSII particles. In Mn-depleted wild-type PSII particles, P(680)(*)()(+) reduction was accelerated by all exogenous bases examined (substituted imidazoles, histidine, Tris, and 1,4-diazabicyclo[2.2.2]octane). We conclude that Y(Z) is solvent accessible in Mn-depleted wild-type PSII particles and that its pK(A) is near that of tyrosine in solution. In Mn-depleted wild-type PSII particles, over 80% of the kinetics of P(680)(*)()(+) reduction after a flash could be described by three kinetic components. The individual rate constants of these components varied slightly with pH, but their relative proportions varied dramatically with pH, showing apparent pK(A) values of 7.5 and 6.25 (6.9 and 5.8 in the presence of Ca(2+) and Mg(2+) ions). An additional pK(A) value (pK(A) < 4.5) may also be present. To describe these data, we propose (1) the pK(A) of His190 is 6.9-7.5, depending on buffer ions, (2) the deprotonation of Y(Z) is facilitated by the transient formation of a either a hydrogen bond or a hydrogen-bonded water bridge between Y(Z) and D1-His190, and (3) when protonated, D1-His190 interacts with nearby residues having pK(A) values near 6 and 4. Because Y(Z) and D1-His190 are located near the Mn cluster, these residues may interact with the Mn cluster in the intact system.  相似文献   

16.
Electron paramagnetic resonance (EPR) analyses (g = 2 region) and optical spectrophotometric analyses of P680+ were made of NH2OH-extracted photosystem II (PSII) membranes after various durations of weak-light photoinhibition, in order to identify the sites of damage responsible for the observed kinetic components of the loss of electron transport [Blubaugh, D.J., & Cheniae, G.M. (1990) Biochemistry 29, 5109-5118]. The EPR spectra, recorded in the presence of K3Fe(CN)6, gave evidence for rapid (t1/2 = 2-3 min) and slow (t1/2 = 3-4) losses of formation of the tyrosyl radicals YZ+ and YD+, respectively, and the rapid appearance (t1/2 = 0.8 min) of a 12-G-wide signal, centered at g = 2.004, which persisted at 4 degrees C in subsequent darkness in rather constant abundance (approximately 1/2 spin per PSII). This latter EPR signal is correlated with quenching of the variable chlorophyll a fluorescence yield and is tentatively attributed to a carotenoid (Car) cation. Exogenous reductants (NH2OH greater than or equal to NH2NH2 greater than DPC much greater than Mn2+) were observed to reduce the quencher, but did not reverse other photoinhibition effects. An additional 10-G-wide signal, tentatively attributed to a chlorophyll (Chl) cation, is observed during illumination of photoinhibited membranes and rapidly decays following illumination. The amplitude of formation of the oxidized primary electron donor, P680+, was unaffected throughout 120 min of photoinhibition, indicating no impairment of charge separation from P680, via pheophytin (Pheo), to the first stable electron acceptor, QA. However, a 4-microsecond decay of P680+, reflecting YZ----P680+, was rapidly (t1/2 = 0.8 min) replaced by an 80-140 microsecond decay, presumably reflecting QA-/P680+ back-reaction. Photoinhibition caused no discernible decoupling of the antenna chlorophyll from the reaction center complex. We conclude that the order of susceptibility of PSII components to photodamage when O2 evolution is impaired is Chl/Car greater than YZ greater than YD much greater than P680, Pheo, QA.  相似文献   

17.
To clarify the nature of cytocidal molecular species among the radicals generated in the iron-catalyzed reactions of peroxides (ROOH), we examined the cytocidal effects of these radicals against gram-positive and gram-negative bacteria in the presence or absence of various radical scavengers. Three organic peroxides, t-butyl hydroperoxide (t-BuOOH), methyl ethyl ketone peroxide (MEKOOH), and cumene hydroperoxide, were used. Each radical generated from these peroxides was identified and quantitated by electron spin resonance (ESR) spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The major cytotoxic radical species generated in the mixtures of various peroxides and heme iron, especially methemoglobin, metmyoglobin, or hemin, was the alkyl peroxyl radical (ROO.). Strong bactericidal action against gram-positive bacteria was observed in the peroxide-heme iron system, especially in the case of t-BuOOH and MEKOOH. Killing curves for gram-positive bacteria showed an initial lag period, which may indicate the multihit/multitarget kinetics of cell killing. When the diethylenetriamine pentaacetic acid (DTPA)-Fe2+ complex was used as a catalyst for decomposition of various peroxides, alkyl, alkoxyl, and alkyl peroxyl radicals were identified by spin-trapping analysis. However, study of the time course of alkyl peroxyl radical production in the DTPA-Fe2+ complex system revealed that radical species generated in this system were very short lived: a maximal level was achieved within 1 min and then declined sharply, and no bactericidal activity was observed after 10 min. In contrast, the alkyl peroxyl radical level generated by the organic peroxide-heme iron system remained high for 30 min or longer. The generation of alkyl peroxyl radicals quantified by ESR correlated quite well with the bactericidal effect of the system of peroxide plus iron. In addition, bactericidal activity was completely inhibited by the addition of the spin trap DMPO, as well as of other various radical scavengers (alpha-tocopherol and L-ascorbic acid), into the peroxide-heme iron system, but this effect was not observed with superoxide dismutase, beta-carotene, dimethyl sulfoxide, diphenylamine, or butylated hydroxyltoluene. In view of these results, it is assumed that alkyl peroxyl radicals are the potent molecular species that are cytotoxic against bacteria, whereas alkoxyl radicals (RO.) generated in this system do not affect bacterial viability.  相似文献   

18.
The oxidation of carotenoid upon illumination at low temperature has been studied in Mn-depleted photosystem II (PSII) using EPR and electronic absorption spectroscopy. Illumination of PSII at 20 K results in carotenoid cation radical (Car+*) formation in essentially all of the centers. When a sample which was preilluminated at 20 K was warmed in darkness to 120 K, Car+* was replaced by a chlorophyll cation radical. This suggests that carotenoid functions as an electron carrier between P680, the photooxidizable chlorophyll in PSII, and ChlZ, the monomeric chlorophyll which acts as a secondary electron donor under some conditions. By correlating with the absorption spectra at different temperatures, specific EPR signals from Car+* and ChlZ+* are distinguished in terms of their g-values and widths. When cytochrome b559 (Cyt b559) is prereduced, illumination at 20 K results in the oxidation of Cyt b559 without the prior formation of a stable Car+*. Although these results can be reconciled with a linear pathway, they are more straightforwardly explained in terms of a branched electron-transfer pathway, where Car is a direct electron donor to P680(+), while Cyt b559 and ChlZ are both capable of donating electrons to Car+*, and where the ChlZ donates electrons when Cyt b559 is oxidized prior to illumination. These results have significant repercussions on the current thinking concerning the protective role of the Cyt b559/ChlZ electron-transfer pathways and on structural models of PSII.  相似文献   

19.
Synechococus sp. strain Miami BG 043511 exhibits very high H(2) photoproduction from water, but the H(2) photoproduction capability is lost rapidly with the age of the batch culture. The decreases of the capability coincides with the decrease of cellular glucose (glycogen) content. However, H(2) photoproduction capability can be restored by the addition of organic substrates. Among 40 organic compounds tested, carbohydrates such as glucose, fructose, maltose, and sucrose were effective electron donors. Among organic acids tested, only pyruvate was an effective electron donor. Among alcohols tested, glycerol was a good electron donor. These results demonstrate that this unicellular cyanobacterium exhibits a wide substrate specificity for H(2) photoproduction but has a different substrate specificity compared to photosynthetic bacteria. The maximum rates of H(2) photoproduction from a 6-day-old batch culture with 25 mmol of pyruvate, glucose, maltose, sucrose, fructose, and glycerol were 1.11, 0.62, 0.50, 0.47, 0.30, and 0.39 micromoles per mg cell dry weight per hour respectively. Therefore, this cyanobacterium strain may have a potential significance in removing organic materials from the wastewater and simultaneously transforming them to H(2) gas, a pollution free energy. The activity of nitrogenase, which catalyzes hydrogen production, completely disappeared when intracellular glucose (glycogen) was used up, but it could be restored by the addition of organic substrates such as glucose and pyruvate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Photosystem II membranes (D-PSII) were isolated from dark-grown spruce seedlings. All major PSII proteins except the 17- and 23-kDa extrinsic proteins were present in D-PSII. O2 evolution and Mn content in D-PSII were negligible, while PSII-donor activity showed a value comparable to that of NH2OH-treated PSII membranes (NH2OH-L-PSII) from light-grown seedlings. Light incubation of D-PSII with 1 m M MnCl2, 50 m M CaCl2 and 100 μ M DCIP at pH 5.3 resulted in activation of the latent water-oxidizing complex. Accomplishment of photoactivation of PSII membranes from dark-grown spruce seedlings clearly indicates that only ligation of Mn2+ to the apo-water oxidizing complex is required for expression of O2 evolution, and that protein synthesis is not involved in the photoactivation process. There was no essential difference between 'photoactivation' of naturally Mn-free PSII membranes and 'photoreactivation' of artificially Mn-depleted PSII membranes on kinetics, pH dependence, Mn2+-concentration dependence. However, kinetics and pH dependence of photoactivation were appreciably different in spruce PSII membranes and in PSII membranes of angiosperms such as wheat and spinach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号