首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.  相似文献   

2.
Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F(q)(')/F(m)(')) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO(2) assimilation rates and higher internal CO(2) concentrations. Increasing CO(2) concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C(i) levels. Together, these data suggest that the primary light-induced opening or CO(2)-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO(2).  相似文献   

3.
High-resolution images of the chlorophyll fluorescence parameter Fq'/Fm' from attached leaves of commelina (Commelina communis) and tradescantia (Tradescantia albiflora) were used to compare the responses of photosynthetic electron transport in stomatal guard cell chloroplasts and underlying mesophyll cells to key environmental variables. Fq'/Fm' estimates the quantum efficiency of photosystem II photochemistry and provides a relative measure of the quantum efficiency of non-cyclic photosynthetic electron transport. Over a range of light intensities, values of Fq'/Fm' were 20% to 30% lower in guard cell chloroplasts than in mesophyll cells, and there was a close linear relationship between the values for the two cell types. The responses of Fq'/Fm' of guard and mesophyll cells to changes of CO2 and O2 concentration were very similar. There were similar reductions of Fq'/Fm' of guard and mesophyll cells over a wide range of CO2 concentrations when the ambient oxygen concentration was decreased from 21% to 2%, suggesting that both cell types have similar proportions of photosynthetic electron transport used by Rubisco activity. When stomata closed after a pulse of dry air, Fq'/Fm' of both guard cell and mesophyll showed the same response; with a marked decline when ambient CO2 was low, but no change when ambient CO2 was high. This indicates that photosynthetic electron transport in guard cell chloroplasts responds to internal, not ambient, CO2 concentration.  相似文献   

4.
持续常温弱光(25℃/18℃,l00umol m-2 s-1)、低温弱光(12℃/12℃,100 umol m-2 s-1和7℃/7℃,l00μmolm-2s-1)均导致黄瓜生长减慢或停滞、叶绿素含量、气孔导度和净光合速率、光合电子传递速率下降以及胞间CO2浓度上升.常温弱光和12℃弱光处理对光系统II的最大光化学效率Fv/Fm无显著影响,而7℃弱光处理导致Fv/Fm的可逆性下降.常温弱光和7℃、12℃弱光处理均导致了光化学反应速率的降低以及天线热耗散和反应中心过剩能量的增加.在胁迫后,12℃弱光0比7℃弱光更有利于植株光合功能的恢复.  相似文献   

5.
Through imaging of chlorophyll fluorescence, it is possible to produce parameterized fluorescence images that estimate the operating quantum efficiency of photosystem II (PSII) photochemistry and which can be used to reveal heterogeneous patterns of photosynthetic performance within leaves. The operating quantum efficiency of PSII photochemistry is dependent upon the effective absorption cross-section of the light-harvesting system of PSII and the photochemical capacity of PSII. The effective absorption cross-section is decreased by the process of down-regulation, which is widely thought to operate within the pigment matrices of PSII and which results in non-photochemical quenching of chlorophyll fluorescence. The photochemical capacity is non-linearly related to the proportion of PSII centres in the 'open' state and results in photochemical quenching of chlorophyll fluorescence. Examples of heterogeneity of the operating quantum efficiency of PSII photochemistry during the induction of photosynthesis in maize leaves and in the chloroplast populations of stomatal guard cells of a leaf of Tradescantia albifora are presented, together with analyses of the factors determining this heterogeneity. A comparison of the operating quantum efficiency of PSII photochemistry within guard cells and adjacent mesophyll cells of Commelina communis is also made, before and after stomatal closure through a change in ambient humidity.  相似文献   

6.
In vitro-cultured plants typically show a low photosynthetic activity, which is considered detrimental to subsequent ex vitro acclimatization. Studies conducted so far have approached this problem by analysing the biochemical and photochemical aspects of photosynthesis, while very little attention has been paid to the role of leaf conductance to CO(2) diffusion, which often represents an important constraint to CO(2) assimilation in naturally grown plants. Mesophyll conductance, in particular, has never been determined in in vitro plants, and no information exists as to whether it represents a limitation to carbon assimilation during in vitro growth and subsequent ex vitro acclimatization. In this study, by means of simultaneous gas exchange and chlorophyll fluorescence measurements, the stomatal and mesophyll conductance to CO(2) diffusion were assessed in in vitro-cultured plants of the grapevine rootstock '41B' (Vitis vinifera 'Chasselas'xVitis berlandieri), prior to and after ex vitro acclimatization. Their impact on electron transport rate partitioning and on limitation of potential net assimilation rate was analysed. In vitro plants had a high stomatal conductance, 155 versus 50 mmol m(-2) s(-1) in acclimatized plants, which ensured a higher CO(2) concentration in the chloroplasts, and a 7% higher electron flow to the carbon reduction pathway. The high stomatal conductance was counterbalanced by a low mesophyll conductance, 43 versus 285 mmol m(-2) s(-1), which accounted for a 14.5% estimated relative limitation to photosynthesis against 2.1% estimated in acclimatized plants. It was concluded that mesophyll conductance represents an important limitation for in vitro plant photosynthesis, and that in acclimatization studies the correct comparison of photosynthetic activity between in vitro and acclimatized plants must take into account the contribution of both stomatal and mesophyll conductance.  相似文献   

7.
Doi M  Shimazaki K 《Plant physiology》2008,147(2):922-930
The stomata of the fern Adiantum capillus-veneris lack a blue light-specific opening response but open in response to red light. We investigated this light response of Adiantum stomata and found that the light wavelength dependence of stomatal opening matched that of photosynthesis. The simultaneous application of red (2 micromol m(-2) s(-1)) and far-red (50 micromol m(-2) s(-1)) light synergistically induced stomatal opening, but application of only one of these wavelengths was ineffective. Adiantum stomata did not respond to CO2 in the dark; the stomata neither opened under a low intercellular CO2 concentration nor closed under high intercellular CO2 concentration. Stomata in Arabidopsis (Arabidopsis thaliana), which were used as a control, showed clear sensitivity to CO2. In Adiantum, stomatal conductance showed much higher light sensitivity when the light was applied to the lower leaf surface, where stomata exist, than when it was applied to the upper surface. This suggests that guard cells likely sensed the light required for stomatal opening. In the epidermal fragments, red light induced both stomatal opening and K+ accumulation in guard cells, and both of these responses were inhibited by a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The stomatal opening was completely inhibited by CsCl, a K+ channel blocker. In intact fern leaves, red light-induced stomatal opening was also suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that Adiantum stomata lack sensitivity to CO2 in the dark and that stomatal opening is driven by photosynthetic electron transport in guard cell chloroplasts, probably via K+ uptake.  相似文献   

8.
Gas exchange parameters and stomatal physical properties were measured in Tradescantia virginiana plants grown under well-watered conditions and treated daily with either distilled water (control) or 3.0 mM abscisic acid (ABA). Photosynthetic capacity (CO(2) assimilation rate for any given leaf intercellular CO(2) concentration [c(i)]) and relative stomatal sensitivity to leaf-to-air vapor-pressure difference were unaffected by the ABA treatment. However, at an ambient CO(2) concentration (c(a)) of 350 micromol mol(-1), ABA-treated plants operated with significantly lower c(i). ABA-treated plants had significantly smaller stomata and higher stomatal density in their lower epidermis. Stomatal aperture versus guard cell pressure (P(g)) characteristics measured with a cell pressure probe showed that although the form of the relationship was similar in control and ABA-treated plants, stomata of ABA-treated plants exhibited more complete closure at P(g) = 0 MPa and less than half the aperture of stomata in control plants at any given P(g). Scaling from stomatal aperture versus P(g) to stomatal conductance versus P(g) showed that plants grown under ABA treatment would have had significantly lower maximum stomatal conductance and would have operated with lower stomatal conductance for any given guard cell turgor. This is consistent with the observation of lower c(i)/c(a) in ABA-treated plants with a c(a) of 350 micromol mol(-1). It is proposed that the ABA-induced changes in stomatal mechanics and stomatal conductance versus P(g) characteristics constitute an improvement in water-use efficiency that may be invoked under prolonged drought conditions.  相似文献   

9.
Plants have developed strategies to circumvent limitations in water supply through the adjustment of stomatal aperture in relation to the photosynthetic capacity (water-use efficiency). The CO2 sensor of guard cells, reporting on the metabolic status of the photosynthetic tissue, is, however, as yet unknown. We elucidated whether extracellular malate has the capability to serve as a signal metabolite in regulating the membrane properties of guard cells. Patch-clamp studies showed that slight variations in the external malate concentration induced major alterations in the voltage-dependent activity of the guard cell anion channel (GCAC1). Superfusion of guard cell protoplasts with malate solutions in the physiological range caused the voltage-gate to shift towards hyperpolarized potentials (Km(mal) = 0.4 mM elicits a 38 mV shift). The selectivity sequence of the anion channel NO3- (4.2) > or = I- (3.9) > Br- (1.9) > Cl- (1) >> mal (0.1) indicates that malate is able to permeate GCAC1. The binding site for shifting the gate is, however, located on the extracellular face of the channel since cytoplasmic malate proved ineffective. Single-channel analysis indicates that extracellular malate affects the voltage-dependent mean open time rather than the unitary conductance of GCAC1. In contrast to malate the rise in the extracellular Cl- concentration increases the unit conductance of the anion efflux channel. We suggest that stomata sense changes in the intercellular CO2 concentration and thus the photosynthetic activity of the mesophyll via feedback regulation of anion efflux from guard cells through malate-sensitive GCAC1.  相似文献   

10.
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.  相似文献   

11.
BACKGROUND AND AIMS: Atriplex (Halimione) portulacoides is a halophytic, C(3) shrub. It is virtually confined to coastal salt marshes, where it often dominates the vegetation. The aim of this study was to investigate its growth responses to salinity and the extent to which these could be explained by photosynthetic physiology. METHODS: The responses of young plants to salinity in the range 0-700 mol m(-3) NaCl were investigated in a glasshouse experiment. The performance of plants was examined using classical growth analysis, measurements of gas exchange (infrared gas analysis), determination of chlorophyll fluorescence characteristics (modulated fluorimeter) and photosynthetic pigment concentrations; total ash, sodium, potassium and nitrogen concentrations, and relative water content were also determined. KEY RESULTS: Plants accumulated Na(+) approximately in proportion to external salinity. Salt stimulated growth up to an external concentration of 200 mol m(-3) NaCl and some growth was maintained at higher salinities. The main determinant of growth response to salinity was unit leaf rate. This was itself reflected in rates of CO(2) assimilation, which were not affected by 200 mol m(-3) but were reduced at higher salinities. Reductions in net photosynthetic rate could be accounted for largely by lower stomatal conductance and intercellular CO(2) concentration. Apart from possible effects of osmotic shock at the beginning of the experiment, salinity did not have any adverse effect on photosystem II (PSII). Neither the quantum efficiency of PSII (Phi(PSII)) nor the chlorophyll fluorescence ratio (F(v)/F(m)) were reduced by salinity, and lower mid-day values recovered by dawn. Mid-day F(v)/F(m) was in fact depressed more at low external sodium concentration, by the end of the experiment. CONCLUSIONS: The growth responses of the hygro-halophyte A. portulacoides to salinity appear largely to depend on changes in its rate of photosynthetic gas exchange. Photosynthesis appears to be limited mainly through stomatal conductance and hence intercellular CO(2) concentration, rather than by effects on PSII; moderate salinity might stimulate carboxylation capacity. This is in contrast to more extreme halophytes, for which an ability to maintain leaf area can partially offset declining rates of carbon assimilation at high salinity.  相似文献   

12.
Stomatal conductance (gs) typically declines in response to increasing intercellular CO2 concentration (ci). However, the mechanisms underlying this response are not fully understood. Recent work suggests that stomatal responses to ci and red light (RL) are linked to photosynthetic electron transport. We investigated the role of photosynthetic electron transport in the stomatal response to ci in intact leaves of cocklebur (Xanthium strumarium) plants by examining the responses of gs and net CO2 assimilation rate to ci in light and darkness, in the presence and absence of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and at 2% and 21% ambient oxygen. Our results indicate that (1) gs and assimilation rate decline concurrently and with similar spatial patterns in response to DCMU; (2) the response of gs to ci changes slope in concert with the transition from Rubisco- to electron transport-limited photosynthesis at various irradiances and oxygen concentrations; (3) the response of gs to ci is similar in darkness and in DCMU-treated leaves, whereas the response in light in non-DCMU-treated leaves is much larger and has a different shape; (4) the response of gs to ci is insensitive to oxygen in DCMU-treated leaves or in darkness; and (5) stomata respond normally to RL when ci is held constant, indicating the RL response does not require a reduction in ci by mesophyll photosynthesis. Together, these results suggest that part of the stomatal response to ci involves the balance between photosynthetic electron transport and carbon reduction either in the mesophyll or in guard cell chloroplasts.  相似文献   

13.
As water availability for agriculture decreases, breeding or engineering of crops with improved water use efficiency (WUE) will be necessary. As stomata are responsible for controlling gas exchange across the plant epidermis, metabolic processes influencing solute accumulation in guard cells are potential targets for engineering. In addition to its role as an osmoticum, sucrose breakdown may be required for synthesis of other osmotica or generation of the ATP needed for solute uptake. Thus, alterations in partitioning of sucrose between storage and breakdown may affect stomatal function. In agreement with this hypothesis, potato (Solanum tuberosum) plants expressing an antisense construct targeted against sucrose synthase 3 (SuSy3) exhibited decreased stomatal conductance, a slight reduction in CO(2) fixation and increased WUE. Conversely, plants with increased guard cell acid invertase activity caused by the introduction of the SUC2 gene from yeast had increased stomatal conductance, increased CO(2) fixation and decreased WUE. (14)CO(2) feeding experiments indicated that these effects cannot be attributed to alterations in photosynthetic capacity, and most likely reflect alterations in stomatal function. These results highlight the important role that sucrose breakdown may play in guard cell function and indicate the feasibility of manipulating plant WUE through engineering of guard cell sucrose metabolism.  相似文献   

14.
High resolution chlorophyll a fluorescence imaging was used to compare the photosynthetic efficiency of PSII electron transport (estimated by Fq'/Fm') in guard cell chloroplasts and the underlying mesophyll in intact leaves of six different species: Commelina communis, Vicia faba, Amaranthus caudatus, Polypodium vulgare, Nicotiana tabacum, and Tradescantia albifora. While photosynthetic efficiency varied between the species, the efficiencies of guard cells and mesophyll cells were always closely matched. As measurement light intensity was increased, guard cells from the lower leaf surfaces of C. communis and V. faba showed larger reductions in photosynthetic efficiency than those from the upper surfaces. In these two species, guard cell photosynthetic efficiency responded similarly to that of the mesophyll when either light intensity or CO2 concentration during either measurement or growth was changed. In all six species, reducing the O2 concentration from 21% to 2% reduced guard cell photosynthetic efficiency, even for the C4 species A. caudatus, although the mesophyll of the C4 species did not show any O2 modulation of photosynthetic efficiency. This suggests that Rubisco activity is significant in the guard cells of these six species. When C. communis plants were water-stressed, the guard cell photosynthetic efficiency declined in parallel with that of the mesophyll. It was concluded that the photosynthetic efficiency in guard cells is determined by the same factors that determine it in the mesophyll.  相似文献   

15.
叶肉细胞导度研究进展   总被引:1,自引:0,他引:1  
史作民  冯秋红  程瑞梅  刘世荣 《生态学报》2010,30(17):4792-4803
叶肉细胞导度指叶片叶肉细胞内部的CO2扩散能力,在植物生理生态及全球气候变化和陆地生态系统相互关系的研究中具有重要作用。系统介绍了叶肉细胞导度的发现、发展过程及其研究进展、几种目前国际上常用的叶肉细胞导度测度方法的原理、计算过程;强调了叶肉细胞导度作为光合作用扩散过程一部分的重要意义,明确了叶肉细胞导度的定义及分布范围。并探讨了不同方法的优缺点及注意事项。总结分析了叶肉细胞导度对不同环境因子(温度、水分及环境中CO2和O3浓度等)的响应,从不同角度对叶肉细胞导度的生态学意义进行了简单的概括。对叶肉细胞导度的未来研究进行了展望。  相似文献   

16.
遮光处理对西葫芦幼苗形态特征及光合生理特性的影响   总被引:15,自引:4,他引:15  
研究了不同遮光处理对西葫芦幼苗形态及光合生理特性的影响.结果表明,在60%透光率条件下,西葫芦幼苗具有较高的相对生长率、净光合速率、气孔导度、蒸腾速率、单叶水分利用效率、饱和蒸汽压、表观量子效率和叶绿素含量,而胞间CO2浓度较低;西葫芦幼苗具有较高的光饱和点(1 125 μmol·m-2·s-1)、较低的光补偿点(15.2 μmol·m-2·s-1).弱光下西葫芦幼苗较耐低浓度CO2,而强光下的幼苗较耐高浓度CO2.60%透光率下西葫芦幼苗叶片丙二醛和脯氨酸含量最低,而过氧化物酶和过氧化氢酶活性则最高.  相似文献   

17.
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel‐based fitting tool (EFT) that will be of use to specialists and non‐specialists alike. We use data acquired in concurrent variable fluorescence–gas exchange experiments, where A/Ci and light–response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5‐bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis–Menten constant, and Rubisco CO2‐saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.  相似文献   

18.
Leaf mesophyll conductance to CO(2) (g(m)) has been recognized to be finite and variable, rapidly adapting to environmental conditions. The physiological basis for fast changes in g(m) is poorly understood, but current reports suggest the involvement of protein-facilitated CO(2) diffusion across cell membranes. A good candidate for this could be the Nicotiana tabacum L. aquaporin NtAQP1, which was shown to increase membrane permeability to CO(2) in Xenopus oocytes. The objective of the present work was to evaluate its effect on the in vivo mesophyll conductance to CO(2), using plants either deficient in or overexpressing NtAQP1. Antisense plants deficient in NtAQP1 (AS) and NtAQP1 overexpressing tobacco plants (O) were compared with their respective wild-type (WT) genotypes (CAS and CO). Plants grown under optimum conditions showed different photosynthetic rates at saturating light, with a decrease of 13% in AS and an increase of 20% in O, compared with their respective controls. CO(2) response curves of photosynthesis also showed significant differences among genotypes. However, in vitro analysis demonstrated that these differences could not be attributed to alterations in Rubisco activity or ribulose-1,5-bisphosphate content. Analyses of chlorophyll fluorescence and on-line (13)C discrimination indicated that the observed differences in net photosynthesis (A(N)) among genotypes were due to different leaf mesophyll conductances to CO(2), which was estimated to be 30% lower in AS and 20% higher in O compared with their respective WT. These results provide evidence for the in vivo involvement of aquaporin NtAQP1 in mesophyll conductance to CO(2).  相似文献   

19.
Drought and salinity are two widespread environmental conditions leading to low water availability for plants. Low water availability is considered the main environmental factor limiting photosynthesis and, consequently, plant growth and yield worldwide. There has been a long-standing controversy as to whether drought and salt stresses mainly limit photosynthesis through diffusive resistances or by metabolic impairment. Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilate CO(2), at mild to rather severe stress levels. The general failure of metabolism observed at more severe stress suggests the occurrence of secondary oxidative stresses, particularly under high-light conditions. Estimates of photosynthetic limitations based on the photosynthetic response to intercellular CO(2) may lead to artefactual conclusions, even if patchy stomatal closure and the relative increase of cuticular conductance are taken into account, as decreasing mesophyll conductance can cause the CO(2) concentration in chloroplasts of stressed leaves to be considerably lower than the intercellular CO(2) concentration. Measurements based on the photosynthetic response to chloroplast CO(2) often confirm that the photosynthetic capacity is preserved but photosynthesis is limited by diffusive resistances in drought and salt-stressed leaves.  相似文献   

20.
The effects of short-term (minutes) variations of CO2 concentration on mesophyll conductance to CO2 (gm) were evaluated in six different C3 species by simultaneous measurements of gas exchange, chlorophyll fluorescence, online carbon isotope discrimination and a novel curve-fitting method. Depending on the species, gm varied from five- to ninefold, along the range of sub-stomatal CO2 concentrations typically used in photosynthesis CO2-response curves (AN)-Ci curves; where AN is the net photosynthetic flux and Ci is the CO2 concentrations in the sub-stomatal cavity), that is, 50 to 1500 micromol CO2 mol(-1) air. Although the pattern was species-dependent, gm strongly declined at high Ci, where photosynthesis was not limited by CO2, but by regeneration of ribulose-1,5-bisphosphate or triose phosphate utilization. Moreover, these changes on gm were found to be totally independent of the velocity and direction of the Ci changes. The response of gm to Ci resembled that of stomatal conductance (gs), but kinetic experiments suggested that the response of gm was actually faster than that of gs. Transgenic tobacco plants differing in the amounts of aquaporin NtAQP1 showed different slopes of the gm-Ci response, suggesting a possible role for aquaporins in mediating CO2 responsiveness of gm. The importance of these findings is discussed in terms of their effects on parameterization of AN-Ci curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号