首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glial Cells Mediate Toxicity in Glutathione-Depleted Mesencephalic Cultures   总被引:1,自引:0,他引:1  
We have examined the role of glial cells in the toxicity that results from inhibition of reduced glutathione (GSH) synthesis by L-buthionine sulfoximine (BSO) in mesencephalic cell cultures. We show that GSH depletion, to levels that cause total cell loss in cultures containing neurons and glial cells, has no effect on cell viability in enriched neuronal cultures. An increase in the plating cell density sensitizes glia-containing cultures to GSH depletion-induced toxicity. This suggests that cell death in this model is the consequence of events that are induced by GSH depletion and are mediated by glial cells. The antioxidant ascorbic acid and the lipoxygenase (LOX) inhibitor nordihydroguaiaretic acid (1-10 microM) provide full protection from BSO toxicity, indicating that arachidonic acid metabolism through the LOX pathway and the generation of reactive oxygen species play a role in the loss of cell viability. In contrast, inhibition of nitric oxide (NO) synthase affords only partial protection from BSO toxicity, suggesting that increased NO production cannot entirely account for cell death in this model. Our data provide evidence that GSH depletion in the presence of glial cells leads to neuronal degeneration that can be prevented by inhibition of LOX. This may have relevance to the pathogenesis of Parkinson's disease, where glial activation and depletion of GSH have been found in the substantia nigra pars compacta.  相似文献   

2.
Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.  相似文献   

3.
Various drugs and chemicals can cause a glutathione (GSH) depletion in the liver. Moreover, nitric oxide (NO) can be generated in response to physiological and pathological situations such as inflammation. The aim of this study was to estimate oxidative stress when primary rat hepatocytes were exposed to GSH depletion after NO production. For this purpose, cells were preincubated with lipopolysaccharide (LPS) and gamma-interferon (IFN) for 18 h in order to induce NO production by NO synthase and then L-buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was added for 5 h. In hepatocyte cultures preincubated with LPS and IFN before BSO addition, an increase in lipid peroxidation was noted. In those cells, an elevation of iron-bound NO and a decrease in free NO led us to suggest the involvement of low-molecular-weight iron (LMW iron) in the enhancement of oxidative stress. Indeed, addition of deferiprone, a chelator of LMW iron, reduced iron-bound NO levels and the extent of oxidative stress. Moreover, an important elevation of LMW iron levels was also observed. As both, N-acetylcysteine, a GSH precursor, and N(G)-monomethyl-L-arginine, a NO synthase inhibitor, totally inhibited the elevation of LMW iron and oxidative stress, a cooperative role could be attributed to NO production and GSH depletion.  相似文献   

4.
Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD.  相似文献   

5.
The Role of Glutathione in Dopaminergic Neuronal Survival   总被引:4,自引:4,他引:0  
Abstract: An increased production of reactive oxygen species is thought to be critical to the pathogenesis of Parkinson's disease. At autopsy, patients with either presymptomatic or symptomatic Parkinson's disease have a decreased level of glutathione in the substantia nigra pars compacta. This change represents the earliest index of oxidative stress in Parkinson's disease discovered to this point. This study compares the sensitivity of dopaminergic and nondopaminergic neurons in dissociated mesencephalic cultures to the depletion of glutathione. We have found that dopaminergic neurons are more resistant to the toxicity of glutathione depletion than nondopaminergic neurons. The possibility that dopaminergic neurons have a higher baseline glutathione level than nondopaminergic neurons is suggested by measurements of levels of cellular glutathione in a parallel system of immortalized embryonic dopaminergic and nondopaminergic cell lines. We also examined the role of glutathione in 1-methyl-4-phenylpyridinium toxicity. Decreasing the glutathione level of dopaminergic neurons potentiates their susceptibility to 1-methyl-4-phenylpyridinium toxicity, although 1-methyl-4-phenylpyridinium does not deplete glutathione from primary mesencephalic cultures. Our data suggest that although a decreased glutathione content is not likely to be the sole cause of dopaminergic neuronal loss in Parkinson's disease, decreased glutathione content may act in conjunction with other factors such as 1-methyl-4-phenylpyridinium to cause the selective death of dopaminergic neurons.  相似文献   

6.
Fan S  Yu Y  Qi M  Sun Z  Li L  Yao G  Tashiro S  Onodera S  Ikejima T 《Free radical research》2012,46(9):1082-1092
Silibinin is an active constituent extracted from the blessed milk thistle (Silybum marianum). In a previous study, we demonstrated that silibinin treatment induced the generation of reactive nitrogen species (RNS), which were associated with reactive oxygen species (ROS), and caused apoptosis and autophagy in HeLa cells. Another study reported that silibinin treatment attenuated the apoptotic effect of sodium nitroprusside (SNP) by generating ROS in rat pheochromocytoma PC12 cells [ 1 ]. To clarify the relationship between RNS and nitric oxide (NO) in HeLa cells, we chose SNP as a NO donor to inhibit the cell viability. We found that silibinin treatment did not reduce the cytotoxicity of NO by reducing the ROS-induced RNS levels; conversely, silibinin treatment enhanced the cytotoxicity of NO. Pre-treatment with the NO scavenger PTIO preserved the viability of SNP- or silibinin-treated cells. Buthionine sulfoximine (BSO) treatment was also used to deplete the level of glutathione (GSH) and subsequently enhance the cytotoxicity of NO. Pre-treatment with BSO enhanced the SNP-induced reduction of cell viability but had no such effects in the silibinin-treated cells. These results led us to investigate whether silibinin treatment could induce the depletion of GSH. JNK and p53 have been shown to mediate the depletion of GSH [ 2 , 3 ], and we previously demonstrated the existence of a ROS-JNK-p53 cycle in silibinin-treated HeLa cells [ 4 ]. Thus, we speculated that p53 also plays a crucial role in the silibinin-induced GSH depletion. To elucidate the role of p53 in this process, A431 cells were used because they are naturally devoid of a functional p53 (p53His273 mutation). To our surprise, silibinin treatment did not lower the GSH level in A431 cells but rather elevated the GSH level. Unlike the ROS level, the NO level was still up-regulated by silibinin treatment in A431 cells. Cumulatively, these findings support the idea that the silibinin-induced GSH depletion, which is mediated by p53, enhances the cytotoxicity of NO in HeLa cells.  相似文献   

7.
We have determined the effect of extended glutathione (GSH) depletion on cis-diamminedichloroplatinum(II) (DDP) cytotoxicity in parent and DDP-resistant human ovarian carcinoma cells. Cells were exposed to 50 microM buthionine sulfoximine (BSO) for 48 h and exposed to DDP for the last 24 h of this time. This treatment protocol sensitized 2008 cells to DDP. The dose modification factor (DMF) defined as IC50 control cells/IC50 GSH depleted cells was 1.6 +/- 0.5 (N = 9). DDP-resistant cells selected by acute, high dose DDP exposure were also sensitized by this treatment; the DMF in the 3-6-fold resistant 2008/DDP cells was 2.4 +/- 1.2 (N = 9). The sensitization was not significantly greater in the resistant cells than in the parent cells (P greater than 0.05). When the rebound of GSH following BSO exposure was reexamined, the GSH levels were found to rise rapidly following trypsinizing and plating. BSO treatment following DDP exposure had no effect on DDP cytotoxicity in 2008 and 2008/DDP cells. These results indicate that simply depleting GSH prior to DDP exposure is not sufficient for sensitizing these cells to DDP. In contrast to the potentiation of nitrogen mustard cytotoxicity, exposure to GSH depletion must be maintained during DDP treatment for enhancement of DDP cytotoxicity to occur.  相似文献   

8.
Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.  相似文献   

9.
The proposed use of methanol (H3COH) as an alternative to fossil fuels has prompted concern about potential health risks resulting from widespread environmental exposure. Methanol is teratogenic in rodents and, although the exact toxic species is not known, teratogenesis may result from the enzymatic biotransformation of H3COH to formaldehyde (CH2O) and formic acid causing increased biological reactivity and toxicity. A protective role for the antioxidant glutathione (GSH) has been described for H3COH, CH2O and formic acid toxicity in various biological systems but has yet to be evaluated in the developing conceptus. Whole embryo culture studies were conducted using GD 10-11 rat conceptuses to elucidate the relationship between H3COH and its metabolites and GSH status. Methanol exposure produced a decrease in normal growth parameters and a dose-dependent loss of viability. CH2O had deleterious effects on embryo growth and viability. Sodium formate (HCOONa) exposure resulted in a high mortality rate but viable embryos did not manifest any abnormalities. Methanol, CH2O, and HCOONa all produced a significant depletion of GSH in both embryo and VYS. Inhibition of GSH synthesis by L-buthionine-S,R-sulfoximine (BSO) treatment exacerbated H3COH, CH2O and HCOONa embryotoxicity. Interestingly, only H3COH/BSO and CH2O/BSO co-treatments caused increased malformation, while embryos treated with HCOONa/BSO did not produce any developmental deformities. These results implicate CH2O as the most embryotoxic H3COH metabolite, on a molar basis, in terms of causing dysmorphogenesis, alterations of normal growth parameters and embryolethality. HCOONa was selectively embryolethal and did not produce dysmorphogenesis. CH2O toxicity is potentiated by GSH depletion, indicating that GSH may be more directly involved in its detoxication in the embryo.  相似文献   

10.
We have previously demonstrated that dopaminergic neurons in midbrain-striatum slice co-cultures are more resistant to NMDA cytotoxicity than the same neuronal population in single midbrain slice cultures. Here, we show that dopaminergic neurons in midbrain-striatum co-cultures also exhibit resistance to the cytotoxicity of nitric oxide donors, 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (NOC-18) and 3-morpholinosydnonimine (SIN-1). The cytotoxicity of NMDA (30 microM) in single cultures was significantly attenuated by the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine (100 microM), whereas the toxicity in co-cultures was not. The levels of tyrosine residue nitration of tyrosine hydroxylase, a hallmark of the occurence of peroxynitrite anion in dopaminergic neurons, were lower in co-cultures than those in single cultures. Single cultures and co-cultures did not show appreciable differences in the number or distribution of NOS-containing neurons as assessed by NADPH diaphorase histochemistry. On the other hand, midbrain slices cultured with striatal slices showed higher levels of superoxide dismutase (SOD) activity as well as increased protein levels of Cu,Zn-SOD, than midbrain slices cultured alone. These results suggested that the generation of NO is involved in NMDA cytotoxicity on dopaminergic neurons, and that increased activity of SOD in co-cultures renders dopaminergic neurons resistant to NMDA cytotoxicity by preventing the formation of peroxynitrite.  相似文献   

11.
To enhance the efficacy of fenretinide (4HPR)-induced reactive oxygen species (ROS) in neuroblastoma, 4HPR was combined with buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, in neuroblastoma cell lines and spheroids, the latter being a three-dimensional tumor model. 4HPR exposure (2.5-10 μM, 24 h) resulted in ROS induction (114-633%) and increased GSH levels (68-120%). A GSH depletion of 80% of basal levels was observed in the presence of BSO (25-100 μM, 24 h). The 4HPR-BSO combination resulted in slightly increased ROS levels (1.1- to 1.3-fold) accompanied by an increase in cytotoxicity (110-150%) compared to 4HPR treatment alone. A correlation was observed between the ROS-inducing capacity of each cell line and the increase in cytotoxicity induced by 4HPR-BSO compared to 4HPR. No significant correlation between baseline antioxidant levels and sensitivity to 4HPR or BSO was observed. In spheroids, 4HPR-BSO induced a strong synergistic growth retardation and induction of apoptosis. Our data show that BSO increased the cytotoxic effects of 4HPR in neuroblastoma monolayers and spheroids in ROS-producing cell lines. This indicates that the 4HPR-BSO combination might be a promising new strategy in the treatment of neuroblastoma.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) provides neuroprotection, but its neuroprotective mechanism has not been resolved. We investigated the neuroprotective mechanism of GDNF using primary culture of the rat mesencephalon. Bleomycin sulfate (BLM) and L-buthionine-[S,R]-sulfoximine (BSO) caused apoptosis in both dopaminergic and nondopaminergic neurons, as revealed by the presence of chromatin condensation, and positive staining by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL). GDNF preincubation blocked the neurotoxicity and reduced the number of the TUNEL-positive cells caused by BLM and BSO exposure. In contrast, GDNF did not provide neuroprotection against glutamate toxicity, which was not accompanied by these apoptotic features. The neuroprotection was mediated by phosphatidylinositol 3-kinase, an effector downstream from c-Ret, because it was blocked by LY294002. GDNF pretreatment caused up-regulation of Bcl-2 and Bcl-x. Furthermore, GDNF suppressed oxygen radical accumulation caused by BLM. Apoptosis induced by BLM and BSO was blocked by a caspase-3 inhibitor. Caspase-3 activity was elevated by BLM and suppressed by GDNF pretreatment. These findings indicate that GDNF has no effect on necrosis but exerts protection against apoptosis by activation of phosphatidylinositol 3-kinase and the subsequent up-regulation of Bcl-2 and Bcl-x, which suppresses accumulation of oxygen radicals followed by caspase-3 activation.  相似文献   

13.
Glutathione (GSH) is the most abundant thiol antioxidant in mammalian cells and maintains thiol redox in the cells. GSH depletion has been implicated in the neurobiology of sensory neurons. Because the mechanisms that lead to melastatin-like transient receptor potential 2 (TRPM2) channel activation/inhibition in response to glutathione depletion and 2-aminoethyldiphenyl borinate (2-APB) administration are not understood, we tested the effects of 2-APB and GSH on oxidative stress and buthionine sulfoximine (BSO)-induced TRPM2 cation channel currents in dorsal root ganglion (DRG) neurons of rats. DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with BSO. In whole-cell patch clamp experiments, TRPM2 currents in the rat were consistently induced by H2O2 or BSO. TRPM2 channels current densities and cytosolic free Ca2+ content of the neurons were higher in BSO and H2O2 groups than in control. However, the current densities and cytosolic Ca2+ release were also higher in the BSO + H2O2 group than in the H2O2 alone. When intracellular GSH is introduced by pipette TRPM2 channel currents were not activated by BSO, H2O2 or rotenone. BSO and H2O2-induced Ca2+ gates were blocked by the 2-APB. Glutathione peroxidase activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by GSH and 2-APB inhibition. In conclusion, we observed the protective role of 2-APB and GSH on Ca2+ influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. Since cytosolic glutathione depletion is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.  相似文献   

14.
Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal.   总被引:3,自引:0,他引:3  
The involvement of glutathione (GSH) dependent processes in the detoxification of 4-hydroxy-2-nonenal (4HNE) was investigated using Chinese hamster fibroblasts and clonogenic cell survival. GSH reacted, in a dose-dependent fashion, with 4HNE in phosphate buffer at pH 6.5, leading to the disappearance of 4HNE. The addition of glutathione transferase activity (GST) facilitated a more rapid disappearance of 4HNE but the reaction was still dependent on the concentration of GSH. When cell cultures were exposed to the reaction mixtures, 4HNE cytotoxicity was also reduced in a manner which was dependent on the concentration of GSH. When 2.16- or 1.08-mM GSH were incubated in phosphate buffer with 1.08-mM 4HNE in the presence or absence of GST, then mixed with media and placed on cells for 1 h, the cytotoxicity associated with exogenous exposure to free 4HNE was abolished. GSH depletion (greater than 90%) using buthionine sulfoximine (BSO) was accomplished in control (HA1) and H2O2-resistant variants derived from HA1. GSH depletion resulted in enhanced cytotoxicity of 4HNE in all cell lines. This BSO-induced sensitization to 4HNE cytotoxicity was accompanied by a significant reduction in the ability of cells to metabolize 4HNE. The magnitude of the sensitization to 4HNE toxicity caused by GSH depletion was similar to the magnitude of the reduction in the ability of cells to metabolize 4HNE. These results support the hypothesis that GSH and GST provide a biologically significant pathway for protection against aldehydic by-products of lipid peroxidation.  相似文献   

15.
4-hydroxy-2-nonenal (HNE) plays an important role in the pathogenesis of cardiac disorders. While conjugation with glutathione (GSH) catalyzed by GSH S-transferase (GST) has been suggested to be a major detoxification mechanism for HNE in target cells, whether chemically upregulated cellular GSH and GST afford protection against HNE toxicity in cardiac cells has not been investigated. In addition, the differential roles of chemically induced GSH and GST as well as other cellular factors in detoxifying HNE in cardiomyocytes are unclear. In this study, we have characterized the induction of GSH and GST by 3H-1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-elevated cellular defenses on HNE-mediated toxicity in rat H9C2 cardiomyocytes. Treatment of cardiomyocytes with D3T resulted in a significant induction of both GSH and GST as well as the mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and GSTA. Both GSH and GST remained elevated for at least 72 h after removal of D3T from the culture media. Treatment of cells with HNE led to a significant decrease in cell viability and an increased formation of HNE-protein adducts. Pretreatment of cells with D3T dramatically protected against HNE-mediated cytotoxicity and protein-adduct formation. HNE treatment caused a significant decrease in cellular GSH level, which preceded the loss of cell viability. Either depletion of cellular GSH by buthionine sulfoximine (BSO) or inhibition of GST by sulfasalazine markedly sensitized the cells to HNE toxicity. Co-treatment of cardiomyocytes with BSO was found to completely block the D3T-mediated GSH elevation, which however failed to reverse the cytoprotective effects of D3T, suggesting that other cellular factor(s) might be involved in D3T cytotprotection. In this regard, D3T was shown to induce cellular aldose reductase (AR). Surprisingly, inhibition of AR by sorbinil failed to potentiate HNE toxicity in cardiomyocytes. In contrast, sorbinil dramatically augmented HNE cytotoxicity in cells with GSH depletion induced by BSO. Similarly, in BSO-treated cells, D3T cytoprotection was also largely reversed by sorbinil, indicating that AR played a significant role in detoxifying HNE only under the condition of GSH depletion in cardiomyocytes. Taken together, this study demonstrates that D3T can induce GSH, GST, and AR in cardiomyocytes, and that the above cellular factors appear to play differential roles in detoxification of HNE in cardiomyocytes.  相似文献   

16.
Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c- jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by α-methyl- dl - p -tyrosine methyl ester (α-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by α-MT, whereas α-MT and c- jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.  相似文献   

17.
Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons.   总被引:5,自引:0,他引:5  
Increased oxidative stresses are implicated in the pathogenesis of Parkinson's disease, and dopaminergic neurons may be intrinsically susceptible to oxidative damage. However, the selective presence of tetrahydrobiopterin (BH(4)) makes dopaminergic neurons more resistant to oxidative stress caused by glutathione depletion. To further investigate the mechanisms of BH(4) protection, we examined the effects of BH(4) on superoxide levels in individual living mesencephalic neurons. Dopaminergic neurons have intrinsically lower levels of superoxide than nondopaminergic neurons. In addition, inhibiting BH(4) synthesis increased superoxide in dopaminergic neurons, while BH(4) supplementation decreased superoxide in nondopaminergic cells. BH(4) is also a cofactor in catecholamine and NO production. In order to exclude the possibility that the antioxidant effects of BH(4) are mediated by dopamine and NO, we used fibroblasts in which neither catecholamine nor NO production occurs. In fibroblasts, BH(4) decreased baseline reactive oxygen species, and attenuated reactive oxygen species increase by rotenone and antimycin A. Physiologic concentrations of BH(4) directly scavenged superoxide generated by potassium superoxide in vitro. We hypothesize that BH(4) protects dopaminergic neurons from ordinary oxidative stresses generated by dopamine and its metabolites and that environmental insults or genetic defects may disrupt this intrinsic capacity of dopaminergic neurons and contribute to their degeneration in Parkinson's disease.  相似文献   

18.
Glutathione (GSH), the major cellular protectant against reactive oxygen and nitrogen species, is compartmentalized in a cytosolic (c) and a mitochondrial (mt) pool. We investigated how c-GSH and mt-GSH are differentially affected by endogenously produced nitric oxide (NO). Microglial cell line (N9) cultures were immunostimulated with lipopolysaccharide/interferon-gamma to elicit the inducible isoform of NO synthase (iNOS). Despite a significant reduction in total GSH, the mt-GSH remained nearly unaffected by iNOS-mediated NO production. To investigate possible consequences of GSH depletion on the mitochondrial membrane potential, we used buthionine sulfoximine (BSO) to reduce separately the c-GSH, whereas ethacrynic acid (EA) was applied to deplete both mt-GSH and c-GSH. The mitochondrial membrane potential was more vulnerable to NO exposure in EA-pretreated cultures than in BSO-pretreated cultures, indicated by a potentiated release of tetramethylrhodamine from mitochondria into the cytosol. To relate the EA-mediated decrease in mitochondrial membrane potential to the oxidant buildup after GSH depletion, we loaded the cells with the oxidant-sensitive fluorochrome 2',7'-dihydrodichlorofluorescein (DCF) diacetate. EA treatment caused an increase in DCF fluorescence over time that was potentiated when the iNOS expression was stimulated. Inhibition of NO production abolished this effect. We conclude that endogenous NO production in microglial cells does not compromise the mt-GSH pool which, in turn, might explain the ability of these cells to combat high-output NO production.  相似文献   

19.
Depletion of glutathione after gamma irradiation modifies survival   总被引:2,自引:0,他引:2  
The relationship between the intracellular glutathione (GSH) concentration and the aerobic radiation response was studied in Chinese hamster ovary cells. Various degrees of GSH depletion were produced by exposure to buthionine sulfoximine (BSO) and/or diethyl maleate (DEM). Diethyl maleate did not act as a classical radiosensitizer under the experimental conditions employed, nor did exposure to DEM/BSO nonspecifically affect protein thiols as measured by thiol blotting. Dose-response curves were obtained using cells irradiated in the absence or presence of DEM/BSO, which decreased GSH levels by 90-95%. Exposure to DEM/BSO did not affect the formation of DNA single-strand breaks or DNA-protein crosslinks measured immediately after irradiation performed at ice temperatures. Analysis of survival curves indicated that the Dq was decreased by 18% when GSH depletion occurred prior to, during, and after irradiation. The DEM/BSO exposure did not affect D0. To study postirradiation conditions, cells were exposed to 10 microM DEM prior to and during irradiation, which was performed at ice temperatures. Levels of GSH were depleted by 75% by this protocol. Immediately after irradiation, the cells were rapidly warmed by the addition of 37 degrees C growth medium containing either 10 or 90 microM DEM. Addition of 10 microM DEM after irradiation did not affect the degree of depletion, which remained constant at 75%. In contrast, GSH depletion was increased to 90% 10 min after addition of the 90 microM DEM. Addition of 90 microM DEM after irradiation produced a statistically significant difference in survival compared to addition of 10 microM DEM. In a second depletion protocol, cells were exposed to 100 microM DEM at room temperature for 5 min, irradiated, incubated at 37 degrees C for 1 h, washed, and then incubated in 50 microM BSO for 24 h. This depletion protocol reduced survival by a factor of 2.6 compared to cells not exposed to the combination of DEM/BSO. Survival was not affected if the cells were exposed to the DEM or BSO alone. This was interpreted to indicate that survival was not affected by GSH depletion occurring after irradiation unless depletion was rapid and sustained. The rate of repair of sublethal and potentially lethal damage was measured and found to be independent of the DEM/BSO exposure. These experimental results in addition to previous ones (Freeman and Meredith, Int. J. Radiat. Oncol. Biol. Phys. 13, 1371-1375, 1987) were interpreted to indicate that under aerobic conditions GSH depletion may alter the expression of radiation damage by affecting metabolic fixation.  相似文献   

20.
Glutathione (GSH) depletion to approximately equal to 5% of control for 48 h or longer by 0.05 mM L-buthionine sulfoximine (BSO) led to appreciable toxicity for the 66 murine mammary carcinoma cells growing in vitro [L.A. Dethlefsen et al., Int. J. Radiat. Oncol. Biol. Phys. 12, 1157-1160 (1986)]. Such toxicity in normal, proliferating cells in vivo would be undesirable. Thus the toxic effects after acute GSH depletion to approximately equal to 5% of control by BSO plus dimethylfumarate (DMF) were evaluated in these same 66 cells to determine if this anti-proliferative effect could be minimized. Two hours of 0.025 mM DMF reduced GSH to 45% of control, while 6 h of 0.05 mM BSO reduced it to 16%. However, BSO (6 h) plus DMF (2 h) and BSO (24 h) plus DMF (2 h) reduced GSH to 4 and 2%, respectively. The incorporation (15-min pulses) of radioactive precursors into protein and RNA were unaffected by these treatment protocols. In contrast, cell growth was only modestly affected, but the incorporation of [3H]thymidine into DNA was reduced to 64% of control by the BSO (24 h) plus DMF (2 h) protocol even though it was unaffected by the BSO (6 h) plus DMF (2 h) treatment. The cellular plating efficiencies from both protocols were reduced to approximately equal to 75% of control cells. However, the aerobic radiation response, as measured by cell survival, was not modified at doses of either 4.0 or 8.0 Gy. The growth rates of treated cultures, after drug removal, quickly returned to control rates and the resynthesis of GSH in cells from both protocols was also rapid. The GSH levels after either protocol were slightly above control by 12 h after drug removal, dramatically over control (approximately equal to 200%) by 24 h, and back to normal by 48 h. Thus even a relatively short treatment with BSO and DMF resulting in a GSH depletion to 2-5% of control had a marked effect on DNA synthesis and plating efficiency and a modest effect on cellular growth. One cannot rule out a direct effect of the drugs, but presumably the antiproliferative effects are due to a depletion of nuclear GSH with the subsequent inhibition of the GSH/glutaredoxin-mediated conversion of ribonucleotides to deoxyribonucleotides. However, even after extended treatment, upon drug removal, GSH was rapidly resynthesized and cellular DNA synthesis and growth quickly resumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号