首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that the Dolichos biflorus plant contains a lectin in its stems and leaves, called DB58, that is closely related to the D. biflorus seed lectin. DB58 is a heterodimer composed of two closely related subunits. Immunoprecipitation of total translation products from D. biflorus stem and leaf mRNA suggests a single polypeptide precursor for both of these subunits. Several identical cDNA clones representing the entire coding region of the DB58 mRNA have been isolated from a D. biflorus stem and leaf cDNA library. The DB58 cDNA represents an mRNA encoding a polypeptide of Mr = 29,545. The predicted polypeptide is equal in length to the larger subunit of DB58 with the addition of a 22-amino acid amino-terminal signal sequence. The sequence of the DB58 lectin exhibits 84% homology to the D. biflorus seed lectin at the amino acid level, suggesting that these lectins are encoded by differentially expressed genes and may have evolved to carry out tissue-specific functions. Comparison of the DB58 sequence to other leguminous seed lectins indicates a high degree of structural conservation.  相似文献   

2.
The seed lectin and a stem and leaf lectin (DB58) from Dolichos biflorus have high-affinity hydrophobic sites that bind to adenine. The present study employs a centrifugal filtration assay to characterize these sites. The seed lectin contains two identical sites with Ka's of 7.31 x 10(5) L/mol whereas DB58 has a single site with a Ka of 1.07 x 10(6) L/mol. The relative affinities of these sites for a host of adenine analogs and derivatives were determined by competitive displacement assays. The most effective competitors for adenine were the cytokinins, a class of plant hormone, for which the lectins had apparent Ka's of 1.96 x 10(5)-4.90 x 10(4) L/mol. Direct binding of the cytokinin 6-(benzylamino)purine (BAP) to both lectins showed positive cooperativity for only the seed lectin, indicating the interaction of this ligand with more than one class of hydrophobic binding site. Fluorescence enhancement assays demonstrate cooperativity between hydrophobic sites of the seed lectin and also suggest that BAP binds to more than one class of site.  相似文献   

3.
Primary structure of the Dolichos biflorus seed lectin   总被引:2,自引:0,他引:2  
The Dolichos biflorus seed lectin is a tetramer composed of equal amounts of two subunit types. The subunit types are structurally very similar, yet only the larger subunit exhibits the ability to bind carbohydrate. A cDNA clone representing the entire coding region of the D. biflorus lectin mRNA has been sequenced. This cDNA represents 1075 nucleotides of seed lectin mRNA encoding a polypeptide of Mr = 29,674. Analysis of the deduced sequence indicates that the NH2 termini and COOH termini of both lectin subunits are present within the mRNA coding region. This information supports previous data indicating that both subunits of the lectin are encoded by a single mRNA and that the difference between the subunit types apparently arises by the proteolytic removal of a 10-amino acid sequence from the COOH terminus of the larger subunit. Comparison of the D. biflorus seed lectin sequence to the sequence of other leguminous seed lectins indicates regions of extensive homology. The residues of concanavalin A involved in metal binding are highly conserved in the D. biflorus lectin, but those involved in saccharide binding show a much lower degree of conservation. Prediction of the secondary conformation of the D. biflorus polypeptide suggests that structures involved in the formation of quaternary structure in concanavalin A are also conserved.  相似文献   

4.
The legume lectins are widely used as a model system for studying protein-carbohydrate and protein-protein interactions. They exhibit a fascinating quaternary structure variation, which becomes important when they interact with multivalent glycoconjugates, for instance those on cell surfaces. Recently, it has become clear that certain lectins form weakly associated oligomers. This phenomenon may play a role in the regulation of receptor crosslinking and subsequent signal transduction. The crystal structure of DB58, a dimeric lectin from the legume Dolichos biflorus reveals a separate dimer of a previously unobserved type, in addition to a tetramer consisting of two such dimers. This tetramer resembles that formed by DBL, the seed lectin from the same plant. A single amino acid substitution in DB58 affects the conformation and flexibility of a loop in the canonical dimer interface. This disrupts the formation of a stable DBL-like tetramer in solution, but does not prohibit its formation in suitable conditions, which greatly increases the possibilities for the cross-linking of multivalent ligands. The non-canonical DB58 dimer has a buried symmetrical alpha helix, which can be present in the crystal in either of two antiparallel orientations. Two existing structures and datasets for lectins with similar quaternary structures were reconsidered. A central alpha helix could be observed in the soybean lectin, but not in the leucoagglutinating lectin from Phaseolus vulgaris. The relative position and orientation of the carbohydrate-binding sites in the DB58 dimer may affect its ability to crosslink mulitivalent ligands, compared to the other legume lectin dimers.  相似文献   

5.
6.
The regions around the human insulin gene have been studied by heteroduplex, hybridization and sequence analysis. These studies indicated that there is a region of heterogeneous length located approximately 700 bp before the 5' end of the gene; and that the 19 kb of cloned DNA which includes the 1430 bp insulin gene as well as 5650 bp before and 11,500 bp after the gene is single copy sequence except for 500 bp located 6000 bp from the 3' end of the gene. This 500 bp segment contains a member of the Alu family of dispersed middle repetitive sequences as well as another less highly repeated homopolymeric segment. The sequence of this region was determined. This Alu repeat is bordered by 19 bp direct repeats and also contains an 83 bp sequence which is present twice. The regions flanking the human and rat I insulin genes were compared by heteroduplex analysis to localize homologous sequences in the flanking regions which could be involved in the regulation of insulin biosynthesis. The homology between the two genes is restricted to the region encoding preproinsulin and a short region of approximately 60 bp flanking the 5' side of the genes.  相似文献   

7.
Isolation and characterization of the rat proenkephalin gene   总被引:14,自引:0,他引:14  
The rat proenkephalin gene has been isolated by molecular cloning and characterized by DNA-sequence analysis. The gene exhibits a structural organization similar to that of the human gene. The nucleotide sequence encoding the biologically active opioid peptides which are generated from the proenkephalin precursor as well as the 3' untranslated region of the mRNA are found on a large exon at the 3' end of the gene (Exon III). The nucleotide sequence encoding the N terminus of the mature protein and its signal peptide are located on Exon II while Exon I encodes the 5' untranslated region of the mRNA. The nucleotide sequence of these exons and their flanking regions has been determined and compared to the human proenkephalin gene. Analysis of the nucleotide sequence homology between the human and rat proenkephalin gene reveals the presence of highly conserved regions within both the coding and noncoding portions of the genes. Enkephalin-coding sequences as well as 5' flanking sequences appear to be the most highly conserved. The importance and possible function of these sequences are discussed.  相似文献   

8.
9.
Five independent clones containing the natural chicken ovomucoid gene have been isolated from a chicken gene library. One of these clones, CL21, contains the complete ovomucoid gene and includes more than 3 kb of DNA sequences flanking both termini of the gene. Restriction endonuclease mapping, electron microscopy and direct DNA sequencing analyses of this clone have revealed that the ovomucoid gene is 5.6 kb long and codes for a messenger RNA of 821 nucleotides. The structural gene sequence coding Ifor the mature messenger RNA is split into at least eight segments by a minimum of seven intervening sequences of various sizes. The shortest structural gene segment is only 20 nucleotides long. All seven intervening sequences are located within the peptide coding region of the gene, and the sequences at the 5' and 3' untranslated regions of the mRNA are not interrupted by intervening sequences. The DNA sequences of the regions flanking the 5' and 3' termini of the gene have been determined. Thirty nucleotides before the start of the messenger RNA coding sequence is the heptanucleotide TATATAT, which is also present in a similar location relative to the chicken ovalbumin gene and other unique sequence eucaryotic genes. This sequence resembles that of the Pribnow box in procaryotic genes where a promoter function has been implicated. Seven nucleotides past the 3' end of the gene is the tetranucleotide TTGT, a sequence found to be present at identical locations as either TTTT or TTGT in other eucaryotic genes that have been sequenced. These conserved DNA sequences flanking eucaryotic genes may serve some regulator function in the expression of these genes.  相似文献   

10.
11.
Two human gamma-crystallin genes are linked and riddled with Alu-repeats   总被引:7,自引:0,他引:7  
A human genomic cosmid clone, pHcos gamma-1, has been isolated containing two closely linked gamma-crystallin genes, oriented in the same direction. The sequence of these genes and their 5' and 3' flanking regions has been determined. The coding regions of both genes are interrupted by two introns. The first introns (94 and 100 bp, respectively) are located in the 5' region of the genes. The second introns (2.82 and 0.95 kb, respectively) divide the genes into two halves, each encoding a structural domain of the gamma-crystallin protein. The coding regions of the two genes show 80% homology. Due to a mutation in the splice acceptor site of the second intron of the first gene, the coding region of its third exon is 3 bp longer than that of the second gene. In the flanking regions several conserved sequence elements were found, including those elements that are known to be necessary for the correct expression of eukaryotic genes. The flanking and intronic regions of the genes contain 'simple sequence' DNA and Alu repeats. The Alu repeats are usually clustered, contain truncated elements, and are often located near simple sequence DNA.  相似文献   

12.
The carbohydrate-binding sequences of the lectin genes from spring vetchling Lathyrus vernus (L.) Bernh., marsh vetchling L. palustris (L.), and Gmelin's vetchling L. gmelinii (Fitsch) (Fabaceae) were determined. Computer-aided analysis revealed substantial differences between nucleotide and predicted amino acid sequences of the lectin gene regions examined in each of the three vetchling species tested. In the phylogenetic trees based on sequence similarity of carbohydrate-biding regions of legume lectins, the sequences examined formed a compact cluster with the lectin genes of the plants belonging to the tribe Fabeae. In each plant, L. vernus, L. palustris, and L. gmelinii, three different lectin-encoding genes were detected. Most of the substitutions were identified within the gene sequence responsible for coding the carbohydrate-binding protein regions. This finding may explain different affinity of these lectins to different carbohydrates, and as a consequence, can affect the plant host specificity upon development of symbiosis with rhizobium bacteria.  相似文献   

13.
The seed lectin (DBL) from the leguminous plant Dolichos biflorus has a unique specificity among the members of the legume lectin family because of its high preference for GalNAc over Gal. In addition, precipitation of blood group A+H substance by DBL is slightly better inhibited by a blood group A trisaccharide (GalNAc(alpha1-3)[Fuc(alpha1-2)]Gal) containing pentasaccharide, and about 40 times better by the Forssman disaccharide (GalNAc(alpha1-3)GalNAc) than by GalNAc. We report the crystal structures of the DBL-blood group A trisaccharide complex and the DBL-Forssman disaccharide complex.A comparison with the binding sites of Gal-binding legume lectins indicates that the low affinity of DBL for Gal is due to the substitution of a conserved aromatic residue by an aliphatic residue (Leu127). Binding studies with a Leu127Phe mutant corroborate these conclusions. DBL has a higher affinity for GalNAc because the N-acetyl group compensates for the loss of aromatic stacking in DBL by making a hydrogen bond with the backbone amide group of Gly103 and a hydrophobic contact with the side-chains of Trp132 and Tyr104.Some legume lectins possess a hydrophobic binding site that binds adenine and adenine-derived plant hormones, i.e. cytokinins. The exact function of this binding site is unknown, but adenine/cytokinin-binding legume lectins might be involved in storage of plant hormones or plant growth regulation. The structures of DBL in complex with adenine and of the dimeric stem and leaf lectin (DB58) from the same plant provide the first structural data on these binding sites. Both oligomers possess an unusual architecture, featuring an alpha-helix sandwiched between two monomers. In both oligomers, this alpha-helix is directly involved in the formation of the hydrophobic binding site. DB58 adopts a novel quaternary structure, related to the quaternary structure of the DBL heterotetramer, and brings the number of know legume lectin dimer types to four.  相似文献   

14.
15.
The carbohydrate-binding sequences (CBS) in the lectin genes of Trijilium repens, T. pratense, and T. tri-chocephalum were sequenced. The gene regions encoding lectin CBS of T. pratense and T. repens displayed a considerable similarity; however, the CBS of these species differed essentially. Moreover, T. repens formed a compact cluster with Melilotus albus and M. officinalis in the phylogenetic trees constructed according to the nucleotide sequences and the corresponding CBS of legume lectins. T. trichocephalum does not fall into the group of the tribe Trifolieae members according to both the amino acid sequence of lectin carbohydrate-binding region and the nucleotide sequence of lectin gene.  相似文献   

16.
17.
A lectin has been isolated from the roots of 7-day-old Dolichos biflorus plants and has been compared with the D. biflorus seed lectin. The root lectin differs from the seed lectin in molecular weight, subunit stoichiometry, amino acid composition, amino terminal amino acid sequence, and isoelectric focusing pattern. However, the root lectin has in common with the seed lectin a specificity for N-acetyl-D-galactosamine, and upon denaturation the root lectin will react weakly with antiserum made to denatured seed lectin. Distribution studies of this lectin in germinating seedlings show that the highest levels of lectin are found in 1-day-old roots. Upon dissection and analysis of 7-day-old roots, the highest levels of the lectin are in the uppermost segment. In addition, isoforms of this lectin also exist in the stems and leaves of the plant.  相似文献   

18.
Our previous studies on the fruit body lectin of Pleurotus cornucopiae revealed the existence of three isolectins, composed of two homodimers and one heterodimer of 16- and 15-kDa subunits. In this study, two genes encoding the lectins were cloned and characterized. Both genes encoded 144 amino acids and only 5 amino acids were different within the coding region, but the nucleotide sequences of the 5'-upstream and 3'-downstream regions differed extensively. Southern hybridization with gene-specific probes showed that one gene encoded the 16-kDa and the other encoded the 15-kDa subunit. Functional lectins were synthesized in Escherichia coli under the direction of these genes. On SDS-PAGE, the recombinant lectins showed the same banding patterns as the native lectins. In amino acid sequence, these lectins showed extensive similarity with the lectin from a nematode-trapping ascomycete fungus, Arthrobotrys oligospora, suggesting that the lectins might also function in capturing nematodes.  相似文献   

19.
We have determined the nucleotide sequence of 4508 base pairs of human genomic DNA which contain the human serine esterase gene from cytotoxic T lymphocytes (SECT) (equivalent to the 1-3E cDNA clone) and include 879 bp of 5' flanking DNA and 393 bp of 3' flanking DNA. The gene consists of five exons of 88, 148, 136, 261, and 257 nucleotides separated by four introns of 1043, 455, 205, and 643 nucleotides. The location of introns with respect to protein coding sequences in the SECT gene is identical to that of the human cathepsin G and murine granzyme B genes. Comparison of SECT gene exonic sequences to murine granzyme B-F cDNA sequences indicates similarities of 75 and 72% for granzymes B and C and 61, 59, and 61% for granzymes D, E, and F, respectively. The 5' flanking sequence of the SECT gene showed similarity only to the 5' flanking sequence of the murine granzyme B gene, indicating that these genes are homologous. Comparison of the SECT gene sequence to the human cathepsin G sequence indicated no similarity in the 5' flanking DNA although the exonic sequences show 64% sequence similarity overall and 45% sequence similarity in the respective 3' untranslated regions. These similarities suggest that the SECT and cathepsin G genes are members of the same family of serine protease genes. Evidence from high and low stringency Southern transfer analysis of human genomic DNA indicates the presence of another gene of at least 85% sequence similarity to the SECT gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号