首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epidermis-specific gene expression in Pachyphytum.   总被引:2,自引:2,他引:0       下载免费PDF全文
A M Clark  J A Verbeke    H J Bohnert 《The Plant cell》1992,4(10):1189-1198
  相似文献   

3.
4.
The Arabidopsis root is composed of radial cell layers, each with distinct identities. The epidermal layer is composed of rows of hair cells flanked on either side by rows of non-hair epidermal cells. The development of hair and non-hair cells is dependent on domains of positional information with strict boundaries. The pattern of cell differentiation and the expression of molecular markers of cell fate is altered in the ectopic root hair 3 (erh3) mutant epidermis indicating that ERH3 is required for the specification of cell fates from early in development (in the meristem) through differentiation. Furthermore the expression of molecular markers indicates that the specification of cell identities is defective within other radial cell layers. ERH3 encodes a p60 katanin protein that is expressed throughout the plant. Katanin proteins are known to sever microtubules, and have a role in the organisation of the plant cell wall since mutants with decreased katanin activity have been shown to have defective walls. We suggest that microtubules are involved in the specification of cell identities in cells of the Arabidopsis root. Microtubules may be required for the localization of positional cues in the wall that have previously been shown to operate in the development of the root epidermis. Alternatively microtubules may be involved in another as yet undefined process required for the specification of cell identity in plants.  相似文献   

5.
In early plant embryogenesis, the determination of cell fate in the protodermal cell layer is considered to be the earliest event in radial pattern formation. To elucidate the mechanisms of epidermal cell fate determination and radial pattern formation in early rice embryogenesis, we have isolated a GL2-type homeobox gene Roc1 (Rice outermost cell-specific gene1), which is specifically expressed in the protoderm (epidermis). In early rice embryogenesis, cell division occurs randomly and the morphologically distinct layer structure of the protoderm cannot be observed until the embryo reaches more than 100 microm in length. Nonetheless, in situ hybridization analyses revealed that specific expression of Roc1 in the outermost cells is established shortly after fertilization, much earlier than protoderm differentiation. In the regeneration process from callus, the Roc1 gene is also expressed in the outermost cells of callus in advance of tissue and organ differentiation, and occurs independently of whether the cells will differentiate into epidermis in the future or not. Furthermore, this cell-specific Roc1 expression could be induced flexibly in the newly produced outermost cells when we cut the callus. These findings suggest that the expression of Roc1 in the outermost cells may be dependent on the positional information of cells in the embryo or callus prior to the cell fate determination of the protoderm (epidermis). Furthermore, the Roc1 expression is downregulated in the inner cells of ligule, which have previously been determined as protodermal cells, also suggesting that the Roc1 expression is position dependent and that this position dependent Roc1 expression is important also in post-embryonic protoderm (epidermis) differentiation.  相似文献   

6.
Recent studies on the role of epigenetic modifications during plant development emphasize the fact that both positional information and tissue specificity are essential factors that establish epigenetic marks and thus determine cell fate and differentiation processes. The root apical meristem (RAM), which contains stem cells and generates radial patterns of tissues, is an ideal model for studying the correlation between cell position and cell-type differentiation, with particular emphasis on the patterns, global levels, and landscapes of epigenetic modifications. To date, there has been no clear evidence for differential levels of histone and DNA modification across root meristematic tissues. Our study clearly indicates that levels of modifications with potential epigenetic effects vary between RAM tissues. Of particular interest is that histone H4 acetylation in the epidermis is not simply replication-dependent and probably plays a role in epidermal cell differentiation.  相似文献   

7.
Recent gene ablation studies in mice have shown that matriptase, a type II transmembrane serine protease, and prostasin, a glycosylphosphatidylinositol-anchored membrane serine protease, are both required for processing of the epidermis-specific polyprotein, profilaggrin, stratum corneum formation, and acquisition of epidermal barrier function. Here we present evidence that matriptase acts upstream of prostasin in a zymogen activation cascade that regulates terminal epidermal differentiation and is required for prostasin zymogen activation. Enzymatic gene trapping of matriptase combined with prostasin immunohistochemistry revealed that matriptase was co-localized with prostasin in transitional layer cells of the epidermis and that the developmental onset of expression of the two membrane proteases was coordinated and correlated with acquisition of epidermal barrier function. Purified soluble matriptase efficiently converted soluble prostasin zymogen to an active two-chain form that formed SDS-stable complexes with the serpin protease nexin-1. Whereas two forms of prostasin with molecular weights corresponding to the prostasin zymogen and active prostasin were present in wild type epidermis, prostasin was exclusively found in the zymogen form in matriptase-deficient epidermis. These data suggest that matriptase, an autoactivating protease, acts upstream from prostasin to initiate a zymogen cascade that is essential for epidermal differentiation.  相似文献   

8.
9.
10.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non‐hair cells and represents a model system for studying the control of cell‐fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell‐fate stabilization. Our work opens the door for future studies addressing SAB‐dependent functions of the cytoskeleton during root epidermal patterning.  相似文献   

11.
12.
Endoreplication Controls Cell Fate Maintenance   总被引:1,自引:0,他引:1  
Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes as a model system and have manipulated endoreplication levels via mutants of cell-cycle regulators and overexpression of cell-cycle inhibitors under a trichome-specific promoter. Strikingly, a reduction of endoreplication resulted in reduced trichome numbers and caused trichomes to lose their identity. Live observations of young Arabidopsis leaves revealed that dedifferentiating trichomes re-entered mitosis and were re-integrated into the epidermal pavement-cell layer, acquiring the typical characteristics of the surrounding epidermal cells. Conversely, when we promoted endoreplication in glabrous patterning mutants, trichome fate could be restored, demonstrating that endoreplication is an important determinant of cell identity. Our data lead to a new model of cell-fate control and tissue integrity during development by revealing a cell-fate quality control system at the tissue level.  相似文献   

13.
14.
15.
16.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   

17.
The cell layers of the Arabidopsis primary root are arranged in a simple radial pattern. The outermost layer is the lateral root cap and lies outside the epidermis that surrounds the ground tissue. The files of epidermal and lateral root cap cells converge on a ring of initials (lateral root cap/epidermis initial) from which the epidermal and lateral root cap tissues of the seedling are derived, once root growth is initiated after germination. Each initial gives rise to a clone of epidermal cells and a clone of lateral root cap cells. These initial divisions in the epidermal/lateral root cap initial are defective in tornado1 (trn1) and trn2 plants indicating a requirement for TRN1 and TRN2 for initial cell function. Furthermore, lateral root cap cells develop in the epidermal position in trn1 and trn2 roots indicating that TRN1 and TRN2 are required for the maintenance of the radial pattern of cell specification in the root. The death of these ectopic lateral root cap cells in the elongation zone (where lateral root cap cells normally die) results in the development of gaps in the epidermis. These observations indicate that TRN1 and TRN2 are required to maintain the distinction between the lateral root cap and epidermis and suggest that lateral root cap fate is the default state. It also suggests that TRN1 and TRN2 repress lateral root cap fate in cells in the epidermal location. Furthermore, the position-dependent pattern of root hair and non-root hair cell differentiation in the epidermis is defective in trn1 and trn2 mutants. Together these results indicate that TRN1 and TRN2 are required for the maintenance of both the radial pattern of tissue differentiation in the root and for the subsequent circumferential pattern within the epidermis.  相似文献   

18.
19.
Root hairs are tubular outgrowths specifically differentiated from epidermal cells in a differentiation zone. The formation of root hairs greatly increases the surface area of a root and maximizes its ability to absorb water and inorganic nutrients essential for plant growth and development. Root hair development is strictly regulated by intracellular and intercellular signal communications. Cell surface-localized receptor-like protein kinases(RLKs) have been shown to be important components in these cellular processes. In this review,the functions of a number of key RLKs in regulating Arabidopsis root hair development are discussed, especially those involved in root epidermal cell fate determination and root hair tip growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号