首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adventitious roots of Hordeum marinum grown in stagnant deoxygenated solution contain a barrier to radial O2 loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. The present experiments assessed whether induction of the barrier to ROL influences root hydraulic conductivity (Lpr). Wheat (Triticum aestivum) was also studied since, like H. marinum, this species forms aerenchyma in stagnant conditions, but does not form a barrier to ROL. Plants were grown in either aerated or stagnant, deoxygenated nutrient solution for 21-28 d. Root-sleeving O2 electrodes were used to assess patterns of ROL along adventitious roots, and a root-pressure probe and a pressure chamber to measure Lpr for individual adventitious roots and whole root systems, respectively. Lpr, measured under a hydrostatic pressure gradient, was 1.8-fold higher for individual roots, and 5.6-fold higher for whole roots systems, in T. aestivum than H. marinum. However, there was no difference in Lpr between the two species when measured under an osmotic driving force, when water moved from cell to cell rather than apoplastically. Root-zone O2 treatments during growth had no effect on Lpr for either species (measured in aerobic solution). It is concluded that induction of the barrier to ROL in H. marinum did not significantly affect the hydraulic conductivity of either individual adventitious roots or of the whole root system.  相似文献   

2.
The present report describes experiments in which the effects of growth in aerated and stagnant nutrient solutions on adventitious root porosities and patterns of radial O2 loss (ROL) from the roots of four genotypes of rice (Oryza sativa L.) were evaluated. The genotypes studied are usually cultivated in farming systems which differ markedly in their degree of soil waterlogging and flooding. Rice genotypes were found to differ in the constitutive porosity (% gas space) of their adventitious roots when grown in aerated solutions (lowest was 16%, highest was 30%), and the roots grown in stagnant conditions had porosities between 28% and 38%. ROL from the adventitious roots raised in aerated solution increased with distance behind the tip in three of the four genotypes; whereas for roots raised in stagnant solution, ROL decreased with distance behind the tip which is indicative of a high resistance to diffusion between the aerenchyma and external medium. For example, at 35 mm behind the root tip the ROL from roots of the 'deepwater' cultivar grown in stagnant conditions was 0.7% of the rate of its aerated roots, for the 'lowland' cultivar it was 5.6%, and for one of the 'upland' cultivars it was 43.6%. Thus, the barrier to ROL from the adventitious roots in three of the four genotypes was induced by growth in stagnant nutrient solution. A low rate of ROL from the basal zones of roots in an O2-free environment is of adaptative value since longitudinal diffusion of O2 to the root apex would be enhanced which, in turn, enables greater penetration of roots into anaerobic soils.  相似文献   

3.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

4.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

5.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

6.

Background and Aims

When root-zone O2 deficiency occurs together with salinity, regulation of shoot ion concentrations is compromised even more than under salinity alone. Tolerance was evaluated amongst 34 accessions of Hordeum marinum, a wild species in the Triticeae, to combined salinity and root-zone O2 deficiency. Interest in H. marinum arises from the potential to use it as a donor for abiotic stress tolerance into wheat.

Methods

Two batches of 17 H. marinum accessions, from (1) the Nordic Gene Bank and (2) the wheat belt of Western Australia, were exposed to 0·2 or 200 mol m−3 NaCl in aerated or stagnant nutrient solution for 28–29 d. Wheat (Triticum aestivum) was included as a sensitive check species. Growth, root porosity, root radial O2 loss (ROL) and leaf ion (Na+, K+, Cl) concentrations were determined.

Key Results

Owing to space constraints, this report is focused mainly on the accessions from the Nordic Gene Bank. The 17 accessions varied in tolerance; relative growth rate was reduced by 2–38 % in stagnant solution, by 8–42 % in saline solution (aerated) and by 39–71 % in stagnant plus saline treatment. When in stagnant solution, porosity of adventitious roots was 24–33 %; salinity decreased the root porosity in some accessions, but had no effect in others. Roots grown in stagnant solution formed a barrier to ROL, but variation existed amongst accessions in apparent barrier ‘strength’. Leaf Na+ concentration was 142–692 µmol g−1 d. wt for plants in saline solution (aerated), and only increased to 247–748 µmol g−1 d. wt in the stagnant plus saline treatment. Leaf Cl also showed only small effects of stagnant plus saline treatment, compared with saline alone. In comparison with H. marinum, wheat was more adversely affected by each stress alone, and particularly when combined; growth reductions were greater, adventitious root porosity was 21 %, it lacked a barrier to ROL, leaf K+ declined to lower levels, and leaf Na+ and Cl concentrations were 3·1–9-fold and 2·8–6-fold higher, respectively, in wheat.

Conclusions

Stagnant treatment plus salinity reduced growth more than salinity alone, or stagnant alone, but some accessions of H. marinum were still relatively tolerant of these combined stresses, maintaining Na+ and Cl ‘exclusion’ even in an O2-deficient, saline rooting medium.Key words: Aerenchyma, combined salinity and waterlogging, leaf Cl, leaf K+, leaf Na+, radial O2 loss, salt tolerance, salinity–waterlogging interaction, sea barleygrass, waterlogging tolerance, wheat, wild Triticeae  相似文献   

7.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

8.
This study investigated aerenchyma formation and function in adventitious roots of wheat (Triticum aestivum L.) when only a part of the root system was exposed to O2 deficiency. Two experimental systems were used: (1) plants in soil waterlogged at 200 mm below the surface; or (2) a nutrient solution system with only the apical region of a single root exposed to deoxygenated stagnant agar solution with the remainder of the root system in aerated nutrient solution. Porosity increased two‐ to three‐fold along the entire length of the adventitious roots that grew into the water‐saturated zone 200 mm below the soil surface, and also increased in roots that grew in the aerobic soil above the water‐saturated zone. Likewise, adventitious roots with only the tips growing into deoxygenated stagnant agar solution developed aerenchyma along the entire main axis. Measurements of radial O2 loss (ROL), taken using root‐sleeving O2 electrodes, showed this aerenchyma was functional in conducting O2. The ROL measured near tips of intact roots in deoxygenated stagnant agar solution, while the basal part of the root remained in aerated solution, was sustained when the atmosphere around the shoot was replaced by N2. This illustrates the importance of O2 diffusion into the basal regions of roots within an aerobic zone, and the subsequent longitudinal movement of O2 within the aerenchyma, to supply O2 to the tip growing in an O2 deficient zone.  相似文献   

9.
COLMER  T. D. 《Annals of botany》2003,91(2):301-309
The present study evaluated waterlogging tolerance, root porosityand radial O2 loss (ROL) from the adventitious roots, of sevenupland, three paddy, and two deep-water genotypes of rice (Oryzasativa L.). Upland types, with the exception of one genotype,were as tolerant of 30 d soil waterlogging as the paddyand deep-water types. In all but one of the 12 genotypes, thenumber of adventitious roots per stem increased for plants grownin waterlogged, compared with drained, soil. When grown in stagnantdeoxygenated nutrient solution, genotypic variation was evidentfor root porosity and rates of ROL, but there was no overalldifference between plants from the three cultural types. Adventitiousroot porosity increased from 20–26 % for plants grownin aerated solution to 29–41 % for plants grown instagnant solution. Growth in stagnant solution also induceda ‘tight’ barrier to ROL in the basal regions ofadventitious roots of five of the seven upland types, all threepaddy types, and the two deep-water types. The enhanced porosityprovided a low resistance pathway for O2 movement to the roottip, and the barrier to ROL in basal zones would have furtherenhanced longitudinal O2 diffusion towards the apex, by diminishinglosses to the rhizosphere. The plasticity in root physiology,as described above, presumably contributes to the ability ofrice to grow in diverse environments that differ markedly insoil waterlogging, such as drained upland soils as well as waterloggedpaddy fields.  相似文献   

10.
Roots of intact wheat plants were grown for 7-12 d in stagnant nutrient solution, containing 0.1% agar, to mimic the lack of convection in waterlogged soil. Net K+ and P uptakes by seminal and nodal roots were measured separately using a split root system. For seminal roots in stagnant solution, net uptakes as a percentage of aerated roots were between 0% and 16% for P, while K+ ranged between 15% uptake and 54% loss. For the more waterlogging-tolerant nodal roots, net uptakes in stagnant nutrient solution, as a percentage of aerated roots, were 31-73% for P and 69-115% for K+. Elongation rates of nodal roots in stagnant nutrient were about 35-43% of those for roots in aerated solution. This partial inhibition occurred in these nodal roots despite their 15% porosity (v/v). Elevation of O2 partial pressures around the shoots to 40 kPa and then to 80 kPa substantially accelerated nodal root elongation in stagnant solution, demonstrating that most of the inhibition seen with ambient O2 around the shoots was associated with a restricted O2 supply to these nodal roots. Thus, in wheat nodal roots, with a partial pressure of 20 kPa O2 around the shoots, O2 diffusion from the shoots did not completely relieve the restrictions on elongation resulting from stagnancy in the nutrient solution. These results contrast with those in the literature for rice, in which roots function efficiently in stagnant solutions (0.1% agar). So, when wheat roots are aerenchymatous there are still restrictions to O2 diffusion in the gas space continuum between the atmosphere and the functional tissues of the roots. This poor acclimation must have been due to inefficiency of the aerenchymatous axes, which may include persistence of anoxic steles, and/or restricted O2 diffusion in other parts of the gas space continuum, in either the shoots and shoot-root junction or in the root tip.  相似文献   

11.
Assessments of the anatomy, porosity and profiles of radial O2 loss from adventitious roots of 10 species in the Poaceae (from four subfamilies) and two species in the Cyperaceae identified a combination of features characteristic of species that inhabit wetland environments. These include a strong barrier to radial O2 loss in the basal regions of the adventitious roots and extensive aerenchyma formation when grown not only in stagnant but also in aerated nutrient solution. Adventitious root porosity was greater for plants grown in stagnant compared with aerated solution, for all 10 species in the Poaceae. The ‘wetland root’ archetype was best developed in Oryza sativa and the two species of the Cyperaceae, in which the stele contributed less than 5% of the root cross‐sectional area, the cells of the inner cortex were packed in a cuboidal arrangement, and aerenchyma was up to 35–52%. Variations of this root structure, in which the proportional and absolute area of stele was greater, with hexagonal arrangements of cells in the inner cortex and varying in the extent of aerenchyma formation, were present in the other wetland species from the subfamilies Pooideae, Panicoideae and Arundinoideae. Of particular interest were Vetiveria zizanoides and V. filipes, wetland grass species from the tribe Andropogoneae (the same tribe as sorghum, maize and sugarcane), that had a variant of the root anatomy found in rice. The results are promising with regard to enhancing these traits in waterlogging intolerant crops.  相似文献   

12.
Trifolium tomentosum and T. glomeratum are small (< 0·5 mg) seeded pasture legumes which are considered to be waterlogging tolerant and intolerant, respectively. The root porosity of the two species was compared for plants raised for 10 d in aerated nutrient solution and then transferred to either aerated (0·25 mol O2 m–3) or ‘hypoxic’ (0·031–0·069 mol O2 m–3) solutions for a further 7 and 21 d. After 21 d, T. tomentosum developed a root porosity of 11·2% in ‘hypoxic’ solution, which was significantly higher than the 6·1% developed by T. glomeratum. When grown in aerated solution, T. tomentosum also had a larger constitutive porosity (6·7%) than T. glomeratum (3·9%). Cylindrical root-sleeving O2 electrodes were used to measure the rates of radial O2 loss (ROL) from roots of the two species when in an O2-free medium. In general, roots previously grown in ‘hypoxic’ solution had higher rates of ROL than roots grown in aerated solution. Moreover, the rates of ROL along the main root of T. tomentosum were ≈ 5-fold faster than from equivalent locations along roots of T. glomeratum. Manipulations of the shoot O2 concentration resulted in rapid changes in ROL near the root tip of T. tomentosum plants raised in aerated or ‘hypoxic’ solutions, whereas for T. glomeratum ROL only increased for roots of plants raised in ‘hypoxic’ solution. Thus, the cortical air spaces in roots of both species raised in ‘hypoxic’ solution formed a continuous, low resistance pathway for O2 diffusion from the shoots to the roots. ROL from the lateral roots was also evaluated and it was 3-fold faster from T. tomentosum than from T. glomeratum. Moreover, ROL from lateral roots of T. tomentosum was 10–20-fold higher than from a position on the primary root axis the same distance from the root/shoot junction. Relatively, high rates of ROL were also recorded for young (40 mm in length) lateral roots of T. glomeratum which were previously grown in ‘hypoxic’ solution, but the ROL was low for the older lateral roots of this species. The substantial amounts of ROL from the lateral roots may limit O2 supply to the lower parts of the primary root axis, so that the laterals probably become the main functional root system in waterlogged soils.  相似文献   

13.
It has been shown that rice roots grown in a stagnant medium develop a tight barrier to radial oxygen loss (ROL), whereas aerated roots do not. This study investigated whether the induction of a barrier to ROL affects water and solute permeabilities. Growth in stagnant medium markedly reduced the root growth rate relative to aerated conditions. Histochemical studies revealed an early deposition of Casparian bands (CBs) and suberin lamellae (SL) in both the endodermis (EN) and exodermis, and accelerated lignification of stagnant roots. The absolute amounts of suberin, lignin and esterified aromatics (coumaric and ferulic acid) in these barriers were significantly higher in stagnant roots. However, correlative permeability studies revealed that early deposition of barriers in stagnant roots failed to reduce hydraulic conductivity (Lp(r) ) below those of aerated roots. In contrast to Lp(r) , the NaCl permeability (P(sr) ) of stagnant roots was markedly lower than that of aerated roots, as indicated by an increased reflection coefficient (σ(sr) ). In stagnant roots, P(sr) decreased by 60%, while σ(sr) increased by 55%. The stagnant medium differentially affected the Lp(r) and P(sr) of roots, which can be explained in terms of the physical properties of the molecules used and the size of the pores in the apoplast.  相似文献   

14.
15.
Wu C  Ye Z  Li H  Wu S  Deng D  Zhu Y  Wong M 《Journal of experimental botany》2012,63(8):2961-2970
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.  相似文献   

16.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

17.
BACKGROUND AND AIMS: Akagare and Akiochi are diseases of rice associated with sulfide toxicity. This study investigates the possibility that rice reacts to sulfide by producing impermeable barriers in roots. METHODS: Root systems of rice, Oryza sativa cv. Norin 36, were subjected to short-term exposure to 0.174 mm sulfide (5.6 ppm) in stagnant solution. Root growth was monitored; root permeability was investigated in terms of polarographic determinations of oxygen efflux from fine laterals and the apices of adventitious roots, water uptake, anatomy and permeability to Fe2+ using potassium ferricyanide. KEY RESULTS: Both types of root responded rapidly to the sulfide with immediate cessation of growth, decreased radial oxygen loss (ROL) to the rhizospheres and reduced water uptake. Profiles of ROL measured from apex to basal regions of adventitious roots indicated that more intense barriers to ROL than normal were formed around the apices. Absorption of Fe2+ appeared to be impeded in sulfide-treated roots. In adventitious roots, deposition of lipid material (suberisation) and thickenings of walls within the superficial cell layers were obvious within a week after lifting the treatment and could prevent the emergence of laterals and commonly result in their upward longitudinal growth within the cortex. Death of laterals sometimes occurred prior to emergence; emergent laterals eventually died. In adventitious roots, blockages formed within the vascular and aeration systems in response to the sulfide. CONCLUSIONS: In both adventitious and lateral roots, sulfide-induced cell wall suberization and thickening of the superficial layers were correlated with reduced permeability to O2, water and Fe2+. This study sheds light on some of the symptoms of diseases such as Akiochi. The results correlate with the authors' previous findings on the effects on roots of sulfide and lower organic acids in Phragmites and of acetic acid in rice.  相似文献   

18.
Stagnant nutrient solution containing 0.1% agar and with anextremely low oxygen level (‘stagnant agar solution’)was used to simulate the gaseous composition and slow gas diffusionof waterlogged soils. Comparisons were made between the growthof two wheat cultivars(Triticum aestivum,cvs. Gamenya and Kite)and one triticale cultivar(Triticosecale,cv. Muir) grown instagnant relative to aerated solution. For all genotypes tested,immersion of roots in stagnant agar solution resulted in thedeath of the entire seminal root system and led to profuse branchingof the laterals of the nodal roots. In the stagnant agar solutionaerenchyma, as a percentage of the total cross sectional areaof nodal roots, was 18% for Muir, 14% for Kite and 12% for Gamenya;the roots of species with more aerenchyma also attained a longermaximum root length as predicted by the model of Armstrong (in:Woolhouse HW, ed.Advances in botanical research, vol. 7. London:Academic Press, 1979). Muir also had a nodal root/shoot freshweight ratio of 0.5 compared with 0.2–0.3 in Kite andGamenya. The greater number and length of nodal roots of Muirdid not lead to better shoot growth than in the other genotypes;one possible reason for this lack of improvement is a low efficiencyof aerenchymatous roots in wheat.Copyright 1998 Annals of BotanyCompany Root development; aerenchyma; stagnant agar;Triticum aestivumcv. Gamenya;Triticum aestivumcv. Kite;Triticosecalecv. Muir.  相似文献   

19.
Agar at 0.1% in nutrient solution (‘stagnant solution’)was used to prevent turbulence (convection), thus simulatingthe slow gas movements which occur in waterlogged soils. Wheat,aged between 6 and 16 d at the start of the treatment, was usedto test plant growth and development in this stagnant solutionfor 8–15 d. K-MES buffer at 5 mol m-3was used to retainthe pH of the rhizosphere in the stagnant solution at pH 6.5. The prevention of convection reduced dissolved oxygen concentrationsin the bulk solution from 0.275 to below 0.05 mol m-3after 1d, while ethylene accumulated over 10 d to 6.5x10-6m3m-3(ppm). Aerenchyma of nodal roots grown in stagnant solution comprised22% of the cross sectional area of the root 50 mm behind theroot tip; this was similar to values recorded earlier for nodalroots of wheat in waterlogged soil and contrasts with 7.6% forroots in non-flushed solution without agar (referred to in thispaper as ‘semi-stagnant solution’) and 2.4% in N2-flushedsolution. Increases in dry weight and numbers of nodal roots with timewere larger for stagnant and N2-flushed, than for semi-stagnantor aerated solution. In contrast, seminal roots did not growin stagnant solution, while seminal roots in N2-flushed solutiongrew much less than in semi-stagnant or aerated solution. In the stagnant solution, relatively high concentrations ofN, K and P were required to avoid limitations in mineral uptakeinto the roots, due to the long diffusion pathway from the bulksolution imposed by the lack of convection. Nevertheless, ourdata show that the slow growth imposed by the lack of convectionwas due to factors other than low mineral nutrition. The mostlikely cause was the change in the dissolved gas compositionof the root media, particularly of the rhizosphere. In conclusion, in terms of anatomy and morphology the rootsgrown in the stagnant solution more closely resembled thosefrom waterlogged soil than did those grown in either semi-stagnantor N2-flushed solution. Triticum aestivum; wheat; waterlogging; lack of convection; aerenchyma; root development; nutrient uptake  相似文献   

20.
? Aerenchymatous phellem (secondary aerenchyma) has rarely been studied in roots. Its formation and role in internal aeration were evaluated for Melilotus siculus, an annual legume of wet saline land. ? Plants were grown for 21 d in aerated or stagnant (deoxygenated) agar solutions. Root porosity and maximum diameters were measured after 0, 7, 14 and 21 d of treatment. Phellem anatomy was studied and oxygen (O(2)) transport properties examined using methylene blue dye and root-sleeving O(2) electrodes. ? Interconnecting aerenchymatous phellem developed in hypocotyl, tap root and older laterals (but not in aerial shoots), with radial intercellular connections to steles. Porosity of main roots containing phellem was c. 25%; cross-sectional areas of this phellem were threefold greater for stagnant than for aerated treatments. Root radial O(2) loss was significantly reduced by complete hypocotyl submergence; values approached zero after disruption of hypocotyl phellem below the waterline or, after shoot excision, by covering hypocotyl phellem in nontoxic cream. ? Aerenchymatous phellem enables hypocotyl-to-root O(2) transport in M. siculus. Phellem increases radially under stagnant conditions, and will contribute to waterlogging tolerance by enhancing root aeration. It seems likely that with hypocotyl submerged, O(2) will diffuse via surface gas-films and internally from the shoot system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号