首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Galectin-1, an endogenous mammalian lectin, has been implicated in a variety of CNS disorders. However, its role in cerebral ischemia is still elusive. In the present study, we investigated the effect of recombinant galectin-1 on production of astrocytic brain-derived neurotrophic factor (BDNF) and functional recovery following ischemia. Endogenous galectin-1 was found to be markedly upregulated, paralleled with increased astrocytic BDNF production under ischemic conditions both in vitro and in vivo. Administration of galectin-1significantly enhanced the expression and secretion of astrocytic BDNF in dose dependent manner. Moreover, rats subjected to photochemical cerebral ischemia showed reduced neuronal apoptosis in ischemic boundary zone and improved functional recovery after brain infusion of galectin-1 (1 μg/days, 7 days). These results suggest that induction of BDNF in astrocytes by galectin-1 may be a promising intervention to attenuate brain damage after stroke.  相似文献   

2.
AimsWe previously reported that minocycline attenuates acute brain injury and inflammation after focal cerebral ischemia, and this is partly mediated by inhibition of 5-lipoxygenase (5-LOX) expression. Here, we determined the protective effect of minocycline on chronic ischemic brain injury and its relation with the inhibition of 5-LOX expression after focal cerebral ischemia.Main methodsFocal cerebral ischemia was induced by 90 min of middle cerebral artery occlusion followed by reperfusion for 36 days. Minocycline (45 mg/kg) was administered intraperitoneally 2 h and 12 h after ischemia and then every 12 h for 5 days. Sensorimotor function was evaluated 1–28 days after ischemia and cognitive function was determined 30–35 days after ischemia. Thereafter, infarct volume, neuron density, astrogliosis, and 5-LOX expression in the brain were determined.Key findingsMinocycline accelerated the recovery of sensorimotor and cognitive functions, attenuated the loss of neuron density, and inhibited astrogliosis in the boundary zone around the ischemic core, but did not affect infarct volume. Minocycline significantly inhibited the increased 5-LOX expression in the proliferated astrocytes in the boundary zone, and in the macrophages/microglia in the ischemic core.SignificanceMinocycline accelerates functional recovery in the chronic phase of focal cerebral ischemia, which may be partly associated with the reduction of 5-LOX expression.  相似文献   

3.
4.
Proline-rich Akt substrate of 40-kDa (PRAS40) is one of the important interactive linkers between Akt and mTOR signaling pathways. The increase of PRAS40 is related with the reduction of brain damage induced by cerebral ischemia. In the present study, we investigated time-dependent changes in PRAS40 and phospho-PRAS40 (p-PRAS40) immunoreactivities in the hippocampal CA1 region of the gerbil after 5 min of transient cerebral ischemia. PRAS40 immunoreactivity in the CA1 region was decreased in pyramidal neurons from 12 h after ischemic insult in a time-dependent manner, and, at 5 days post-ischemia, PRAS40 immunoreactivity was newly expressed in astrocytes. p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was hardly found 12 h and apparently detected again 1 and 2 days after ischemic insult. At 5 days post-ischemia, p-PRAS40 immunoreactivity in the CA1 pyramidal neurons was not found. These results indicate that ischemia-induced changes in PRAS40 and p-PRAS40 immunoreactivities in CA1 pyramidal neurons and astrocytes may be closely associated with delayed neuronal death in the hippocampal CA1 region following transient cerebral ischemia.  相似文献   

5.
The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult.  相似文献   

6.
Glutamate excitotoxicity, oxidative stress, and acidosis are primary mediators of neuronal death during ischemia and reperfusion. Astrocytes influence these processes in several ways. Glutamate uptake by astrocytes normally prevents excitotoxic glutamate elevations in brain extracellular space, and this process appears to be a critical determinant of neuronal survival in the ischemic penumbra. Conversely, glutamate efflux from astrocytes by reversal of glutamate uptake, volume sensitive organic ion channels, and other routes may contribute to extracellular glutamate elevations. Glutamate activation of neuronal N-methyl-D-aspartate (NMDA) receptors is modulated by glycine and D-serine: both of these neuromodulators are transported by astrocytes, and D-serine production is localized exclusively to astrocytes. Astrocytes influence neuronal antioxidant status through release of ascorbate and uptake of its oxidized form, dehydroascorbate, and by indirectly supporting neuronal glutathione metabolism. In addition, glutathione in astrocytes can serve as a sink for nitric oxide and thereby reduce neuronal oxidant stress during ischemia. Astrocytes probably also influence neuronal survival in the post-ischemic period. Reactive astrocytes secrete nitric oxide, TNFalpha, matrix metalloproteinases, and other factors that can contribute to delayed neuronal death, and facilitate brain edema via aquaporin-4 channels localized to the astrocyte endfoot-endothelial interface. On the other hand erythropoietin, a paracrine messenger in brain, is produced by astrocytes and upregulated after ischemia. Erythropoietin stimulates the Janus kinase-2 (JAK-2) and nuclear factor-kappaB (NF-kB) signaling pathways in neurons to prevent programmed cell death after ischemic or excitotoxic stress. Astrocytes also secrete several angiogenic and neurotrophic factors that are important for vascular and neuronal regeneration after stroke.  相似文献   

7.
Excitotoxicity due to glutamate receptor over-activation is one of the key mediators of neuronal death after an ischemic insult. Therefore, a major function of astrocytes is to maintain low extracellular levels of glutamate. The ability of astrocytic glutamate transporters to regulate the extracellular glutamate concentration depends upon the hyperpolarized membrane potential of astrocytes conferred by the presence of K+ channels in their membranes. We have previously shown that TREK-2 potassium channels in cultured astrocytes are up-regulated by ischemia and may support glutamate clearance by astrocytes during ischemia. Thus, herein we determine the mechanism leading to this up-regulation and assess the localization of TREK-2 channels in astrocytes after transient middle cerebral artery occlusion. By using a cell surface biotinylation assay we confirmed that functional TREK-2 protein is up-regulated in the astrocytic membrane after ischemic conditions. Using real time RT-PCR, we determined that the levels of TREK-2 mRNA were not increased in response to ischemic conditions. By using Western blot and a variety of protein synthesis inhibitors, we demonstrated that the increase of TREK-2 protein expression requires De novo protein synthesis, while protein degradation pathways do not contribute to TREK-2 up-regulation after ischemic conditions. Immunohistochemical studies revealed TREK-2 localization in astrocytes together with increased expression of the selective glial marker, glial fibrillary acidic protein, in brain 24 hours after transient middle cerebral occlusion. Our data indicate that functional TREK-2 channels are up-regulated in the astrocytic membrane during ischemia through a mechanism requiring De novo protein synthesis. This study provides important information about the mechanisms underlying TREK-2 regulation, which has profound implications in neurological diseases such as ischemia where astrocytes play an important role.  相似文献   

8.
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein, p44/WDR77, that plays a critical role in the proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44/WDR77 gene caused premature death with dramatic astrogliosis in mouse brain. We further found that p44/WDR77 is expressed in astrocytes and that loss of p44/WDR77 expression in astrocytes leads to growth arrest and astrogliosis. The astrocyte activation induced by deletion of the p44/WDR77 gene was associated with upregulation of p21(Cip1) expression and NF-κB activation. Silencing p21(Cip1) or NF-κB p65 expression with short hairpin RNA (shRNA) abolished astrocyte activation and rescued the astrocyte growth inhibition induced by deletion of the p44/WDR77 gene. Our results reveal a novel role for p44/WDR77 in the control of astrocyte activation through p21(Cip1) and NF-κB signaling.  相似文献   

9.
Reactive astrogliosis, characterized by cellular hypertrophy and various alterations in gene expression and proliferative phenotypes, is considered to contribute to brain injuries and diseases as diverse as trauma, neurodegeneration, and ischemia. KCa3.1 (intermediate‐conductance calcium‐activated potassium channel), a potassium channel protein, has been reported to be up‐regulated in reactive astrocytes after spinal cord injury in vivo. However, little is known regarding the exact role of KCa3.1 in reactive astrogliosis. To elucidate the role of KCa3.1 in regulating reactive astrogliosis, we investigated the effects of either blocking or knockout of KCa3.1 channels on the production of astrogliosis and astrocytic proliferation in response to transforming growth factor (TGF)‐β in primary cultures of mouse astrocytes. We found that TGF‐β increased KCa3.1 protein expression in astrocytes, with a concomitant marked increase in the expression of reactive astrogliosis, including glial fibrillary acidic protein and chondroitin sulfate proteoglycans. These changes were significantly attenuated by the KCa3.1 inhibitor 1‐((2‐chlorophenyl) (diphenyl)methyl)‐1H‐pyrazole (TRAM‐34). Similarly, the increase in glial fibrillary acidic protein and chondroitin sulfate proteoglycans in response to TGF‐β was attenuated in KCa3.1?/? astrocytes. TRAM‐34 also suppressed astrocytic proliferation. In addition, the TGF‐β‐induced phosphorylation of Smad2 and Smad3 proteins was reduced with either inhibition of KCa3.1 with TRAM‐34 or in KCa3.1?/? astrocytes. These findings highlight a novel role for the KCa3.1 channel in reactive astrogliosis phenotypic modulation and provide a potential target for therapeutic intervention for brain injuries.

  相似文献   


10.
Zhou Y  Wei EQ  Fang SH  Chu LS  Wang ML  Zhang WP  Yu GL  Ye YL  Lin SC  Chen Z 《Life sciences》2006,79(17):1645-1656
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.  相似文献   

11.
兴奋性氨基酸转运体(excitatory amino acid transporters,EAATs)是摄取细胞外液谷氨酸、保持细胞外谷氨酸低浓度的主要机制,已发现了五种EAATs,其中胶质细胞谷氨酸转运体在终止谷氨酸能神经传递、维持细胞外液谷氨酸浓度处于低水平方面发挥更重要作用。胶质细胞谷氨酸转运体的表达和功能受谷氨酸及其受体、垂体腺苷酸环化酶激活多肽、生长因子、内皮素、一氧化氮等许多因素的影响,其表达减少及功能降低与脑缺血损害的发生和发展密切相关,脑缺血预适应可通过调控其表达或改善其功能而诱导脑缺血耐受。  相似文献   

12.
Zhao HG  Li WB  Sun XC  Li QJ  Ai J  Li DL 《中国应用生理学杂志》2007,23(1):19-23,I0002
目的:探讨神经途径在肢体缺血预处理(limbi schemic preconditioning,LIP)抗脑缺血/再灌注损伤中的作用。方法:脑缺血采用四血管闭塞模型,重复短暂夹闭放松大鼠双侧股动脉3次作为LIP。将凝闭椎动脉的大鼠随机分为sham组、脑缺血组、股神经切断+脑缺血组、LIP+脑缺血组、股神经切断+LIP+脑缺血组。于Sham手术和脑缺血后7d处死大鼠,硫堇染色观察海马CA1区锥体神经元迟发性死亡的变化。于Sham手术和脑缺血后6h心脏灌注固定大鼠,免疫组化法测定海马CAI区c-Fos表达的变化。结果:硫堇染色结果显示,与sham组比较。脑缺血组和股神经切断+脑缺血组大鼠海马CAI区均有明显组织损伤。LIP+脑缺血组CAI区无明显细胞缺失,神经元密度明显高于脑缺血组(P〈0.01)。而股神经切断+LIP+脑缺血组大鼠海马CA1区明显损伤,锥体细胞缺失较多,与LIP+脑缺血组组比较,神经元密度显著降低(P〈O.01),提示LIP前切断双侧股神经取消了LIP抗脑缺血/再灌注损伤作用。c—Fos免疫组化染色结果显示,Sham组海马CAI区未见明显的c-Fos蛋白表达。脑缺血组海马CAI区偶见c—Fm的阳性表达。LIP+脑缺血组c—Fos表达增强,数量增加,与Sham组和脑缺血组比较。c-Fos阳性细胞数和光密度均明显升高(P〈0.01)。而股神经切断+LIP+脑缺血组c-Fos表达明显减少,仅见少量弱阳性e-Fos表达。结论:LIP可通过神经途径发挥抗脑缺血/再灌注损伤作用,而LIP诱导c—Fos表达增加可能是LIP诱导脑缺血耐受神经途径的一个环节。  相似文献   

13.
目的观察细胞周期调控对大鼠全脑缺血再灌流后海马区迟发性神经元死亡(delayed neuronal death,DND)以及星形胶质细胞的活化、增殖的影响.方法建立大鼠短暂性全脑缺血再灌流模型,利用尼氏染色、TUNEL、免疫组织化学方法观察再灌流后细胞周期素依赖的蛋白激酶(cyclin depedent kinase, CDK)抑制剂Olomoucine对海马DND以及星形胶质细胞活化增殖的影响.结果全脑缺血再灌流后3d、7d、30d海马神经元明显脱失,部分CA1、CA2区神经元凋亡;星形胶质细胞数目增多,GFAP表达上调,应用Olomoucine后TUNEL阳性神经元数目明显减少,幸存神经元数目增加;星形胶质细胞数目无明显增多,GFAP表达明显下调.结论 CDK抑制剂Olomoucine可有效抑制大鼠全脑缺血后海马神经元DND以及星形胶质细胞活化增殖.  相似文献   

14.
Several studies showed that the up-regulation of glial glutamate transporter-1 (GLT-1) participates in the acquisition of brain ischemic tolerance induced by cerebral ischemic preconditioning or ceftriaxone pretreatment in rats. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance induced by intermittent hypobaric hypoxia (IH) preconditioning (mimicking 5,000?m high-altitude, 6?h per day, once daily for 28?days), immunohistochemistry and western blot were used to observe the changes in the expression of GLT-1 protein in hippocampal CA1 subfield during the induction of brain ischemic tolerance by IH preconditioning, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of brain ischemic tolerance in rats. The basal expression of GLT-1 protein in hippocampal CA1 subfield was significantly up-regulated by IH preconditioning, and at the same time astrocytes were activated by IH preconditioning, which appeared normal soma and aplenty slender processes. The GLT-1 expression was decreased at 7?days after 8-min global brain ischemia. When the rats were pretreated with the IH preconditioning before the global brain ischemia, the down-regulation of GLT-1 protein was prevented clearly. Neuropathological evaluation by thionin staining showed that 200?nmol DHK blocked the protective role of IH preconditioning against delayed neuronal death induced normally by 8-min global brain ischemia. Taken together, the up-regulation of GLT-1 protein participates in the acquisition of brain ischemic tolerance induced by IH preconditioning in rats.  相似文献   

15.
Reactive astrogliosis constitutes a major obstacle to neuronal regeneration and is characterized by rearrangement and upregulation of expression of cytoskeletal proteins, increased proliferation and hypertrophy. Many approaches have been attempted to mimic astrogliosis by inducing reactive astrocytes in vitro. Such research is usually performed using astrocytes derived from Mus musculus or Rattus norvegicus, and results compared between species on the assumption that these cells behave equivalently. Therefore, we compared reactivity between mouse and rat astrocytes in scratch wound assays to gain further insight into how comparable these cell culture models are. Proliferation and migration, as well as expression of the cytoskeletal proteins glial fibrillary acidic protein (GFAP) and vimentin, were compared by immunocytochemistry and immunoblot. Further, we investigated migration of proliferating cells by 5-ethynyl-2'-deoxyuridine staining. Substantial differences in GFAP expression and proliferation between astrocytes of the two species were found: rat astrocytes showed different cytoskeletal morphology, expressed significantly more GFAP and vimentin of different molecular size and were more proliferative than comparable mouse astrocytes. Our results suggest that rat and mouse astrocytes may respond differently to various reactivity-triggering stimuli, which needs to be considered when general conclusions are drawn regarding effects of factors regulating astrocyte reactivity.  相似文献   

16.
Chen  Mingming  Guo  Linlu  Hao  Jie  Ni  Jie  Lv  Qunyu  Xin  Xiaoyan  Liao  Hong 《Cellular and molecular neurobiology》2022,42(4):1153-1166

Astrogliosis after brain trauma can have a significant impact on functional recovery. However, little is known about the mechanisms underlying astrocyte proliferation and subsequent astrogliosis. In this study, we established a cortical stab wound injury mouse model and observed dramatic astrocyte activation and nerve growth factor receptor (p75NTR) upregulation near the lesion. We also found profound alterations in the cell cycle of astrocytes near the lesion, with a switch from a mitotically quiescent (G0) phase to the G2/M and S phases. However, no changes in the level of astrocyte apoptosis were observed. Cell cycle progression to the G2/M and S phases and CDK2 protein levels in response to cortical stab wound was inhibited after p75NTR knockdown in mouse astrocytes. Conversely, p75NTR overexpression in mouse astrocytes was sufficient in promoting cell cycle progression. In conclusion, our results suggested that p75NTR upregulation in astrocytes after brain injury induces cell cycle entry by promoting CDK2 expression and promoting astrocyte proliferation. Our findings provided a better understanding of astrocytic responses after cortical stab wound injury in mice.

  相似文献   

17.
In the brain, prior sublethal ischemia (preconditioning, PC) is known to produce tolerance of neurons to subsequent lethal ischemia. This study aims at elucidating what alterations were induced in neurons and/or astrocytes by PC treatment. The rise in the extracellular concentration of glutamate during ischemia was markedly suppressed by the prior PC treatment. Immunocytochemical and Western blot analyses demonstrated that the expression of the astrocytic glutamate transporter GLT-1 was transiently down-regulated after the PC insult. The PC insult possibly suppressed the neuron-derived factors up-regulating GLT-1. Here we show that PC-induced down-regulation of GLT-1 is crucial for the increased neuronal resistance to subsequent severe ischemic insult.  相似文献   

18.
Ischemic cerebral stroke is one of the leading global causes of mortality and morbidity. Ischemic preconditioning (IPC) refers to a sublethal ischemia and resulting in tolerance to subsequent severe ischemic injury. Although several pathways are reportedly involved in IPC-mediated neuroprotection, the functional role of astrocytes is not fully understood. Stromal cell-derived factor-1 (SDF-1), a CXC chemokine produced mainly in astrocytes, is a ligand for chemokine receptor CXCR4. SDF-1 is reported to play a critical role in neuroprotection after stroke by mediating the migration of neuronal progenitor cells. We hypothesized that stimuli derived from ischemic brain were involved in the protective effects of IPC. To investigate this hypothesis, the mechanism in which ischemic brain extract (IBE) induced SDF-1 expression was investigated in C6 astrocytoma cells. IBE treatment of C6 cells increased SDF-1 expression compared to that in untreated or normal brain extract (NBE)-treated cells by downregulating SDF-1 targeting miRNA, miR-27b. MiR-223 was inversely upregulated in IBE-treated cells; overexpression of miR-223 decreased the expression of miR-27b by suppressing IKKα expression. Analysis of cytokine array data revealed an IBE associated enhanced expression of CINC-1 (CXCL1) and LIX1 (CXCL5). Knockdown or inhibition of their receptor, CXCR2, abolished IBE-mediated increased expression of SDF-1. These results were confirmed in primary cultured astrocytes. Taken together, the data demonstrate that IBE-elicited signals increase SDF-1 expression through the CXCR2/miR-223/miR-27b pathway in C6 astrocytoma cells and primary astrocytes, supporting the view that increased expression of SDF-1 by ischemic insults is a possible mechanism underlying therapeutic application of IPC.  相似文献   

19.
Epilepsy is characterized by both neuronal and astroglial dysfunction. The endogenous anticonvulsant adenosine, the level of which is largely controlled by astrocytes, might provide a crucial link between astrocyte and neuron dysfunction in epilepsy. Here we have studied astrogliosis, a hallmark of the epileptic brain, adenosine dysfunction and the emergence of spontaneous seizures in a comprehensive approach that includes a new mouse model of focal epileptogenesis, mutant mice with altered brain levels of adenosine, and mice lacking adenosine A1 receptors. In wild-type mice, following a focal epileptogenesis-precipitating injury, astrogliosis, upregulation of the adenosine-removing astrocytic enzyme adenosine kinase (ADK), and spontaneous seizures coincide in a spatio-temporally restricted manner. Importantly, these spontaneous seizures are mimicked by untreated transgenic mice that either overexpress ADK in brain or lack A1 receptors. Conversely, mice with reduced ADK in the forebrain do not develop either astrogliosis or spontaneous seizures. Our studies define ADK as a crucial upstream regulator of A1 receptor-mediated modulation of neuronal excitability, and support the ADK hypothesis of epileptogenesis in which upregulation of ADK during astrogliosis provides a crucial link between astrocyte and neuron dysfunction in epilepsy. These findings define ADK as rational target for therapeutic intervention.  相似文献   

20.
目的研究大鼠局灶性脑缺血再灌注损伤后细胞周期蛋白依赖性激酶抑制因子P21cip1在神经元和星形胶质细胞的表达。方法建立大鼠大脑中动脉阻塞(MCAo)再灌注模型,应用流式细胞术检测各组MCAo再灌注后不同时期神经元和星形胶质细胞中的P21cip1的表达。结果缺血侧皮层区星形胶质细胞和神经元中的P21cip1的表达在再灌注3d、7d、14d后表达下调,与假手术组比较有显著性差异(P<0.05);神经元中的P21cip1的表达和星形胶质细胞中的P21cip1的表达无显著性差异(P>0.05)。结论局灶性脑缺血再灌注损伤后,缺血侧皮层区星形胶质细胞和神经元的p21cip1表达下调。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号