首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

2.
The intracellular parasitic protist Trypanosoma cruzi is the causative agent of Chagas disease in Latin America. In general, pyrimidine nucleotides are supplied by both de novo biosynthesis and salvage pathways. While epimastigotes-an insect form-possess both activities, amastigotes-an intracellular replicating form of T. cruzi-are unable to mediate the uptake of pyrimidine. However, the requirement of de novo pyrimidine biosynthesis for parasite growth and survival has not yet been elucidated. Carbamoyl-phosphate synthetase II (CPSII) is the first and rate-limiting enzyme of the de novo biosynthetic pathway, and increased CPSII activity is associated with the rapid proliferation of tumor cells. In the present study, we showed that disruption of the T. cruzi cpsII gene significantly reduced parasite growth. In particular, the growth of amastigotes lacking the cpsII gene was severely suppressed. Thus, the de novo pyrimidine pathway is important for proliferation of T. cruzi in the host cell cytoplasm and represents a promising target for chemotherapy against Chagas disease.  相似文献   

3.
Protozoan parasites are incapable of synthesizing purine nucleotides de novo and so must salvage preformed purines from their hosts. This process of purine acquisition is initiated by the translocation of preformed host purines across parasite or host membranes. Here, we report upon the identification and isolation of DNAs encoding parasite nucleoside transporters and the functional characterization of these proteins in various expression systems. These potential approaches provide a powerful approach for a thorough molecular and biochemical dissection of nucleoside transport in protozoan parasites.  相似文献   

4.
To clarify the contributions of amidophosphoribosyltransferase (ATase) and its feedback regulation to the rates of purine de novo synthesis, DNA synthesis, protein synthesis, and cell growth, mutated human ATase (mhATase) resistant to feedback inhibition by purine ribonucleotides was engineered by site-directed mutagenesis and expressed in CHO ade (-)A cells (an ATase-deficient cell line of Chinese hamster ovary fibroblasts) and in transgenic mice (mhATase-Tg mice). In Chinese hamster ovary transfectants with mhATase, the following parameters were examined: ATase activity and its subunit structure, the metabolic rates of de novo and salvage pathways, DNA and protein synthesis rates, and the rate of cell growth. In mhATase-Tg mice, ATase activity in the liver and spleen, the metabolic rate of the de novo pathway in the liver, serum uric acid concentration, urinary excretion of purine derivatives, and T lymphocyte proliferation by phytohemagglutinin were examined. We concluded the following. 1) ATase and its feedback inhibition regulate not only the rate of purine de novo synthesis but also DNA and protein synthesis rates and the rate of cell growth in cultured fibroblasts. 2) Suppression of the de novo pathway by the salvage pathway is mainly due to the feedback inhibition of ATase by purine ribonucleotides produced via the salvage pathway, whereas the suppression of the salvage pathway by the de novo pathway is due to consumption of 5-phosphoribosyl 1-pyrophosphate by the de novo pathway. 3) The feedback inhibition of ATase is more important for the regulation of the de novo pathway than that of 5-phosphoribosyl 1-pyrophosphate synthetase. 4) ATase superactivity leads to hyperuricemia and an increased bromodeoxyuridine incorporation in T lymphocytes stimulated by phytohemagglutinin.  相似文献   

5.
Purine and pyrimidine nucleotides play critical roles in DNA and RNA synthesis as well as in membrane lipid biosynthesis and protein glycosylation. They are necessary for the development and survival of mature T lymphocytes. Activation of T lymphocytes is associated with an increase of purine and pyrimidine pools. However, the question of how purine vs pyrimidine nucleotides regulate proliferation, cell cycle, and survival of primary T lymphocytes following activation has not yet been specifically addressed. This was investigated in the present study by using well-known purine (mycophenolic acid, 6-mercaptopurine) and pyrimidine (methotrexate, 5-fluorouracil) inhibitors, which are used in neoplastic diseases or as immunosuppressive agents. The effect of these inhibitors was analyzed according to their time of addition with respect to the initiation of mitogenic activation. We showed that synthesis of both purine and pyrimidine nucleotides is required for T cell proliferation. However, purine and pyrimidine nucleotides differentially regulate the cell cycle since purines control both G(1) to S phase transition and progression through the S phase, whereas pyrimidines only control progression from early to intermediate S phase. Furthermore, inhibition of pyrimidine synthesis induces apoptosis whatever the time of inhibitor addition whereas inhibition of purine nucleotides induces apoptosis only when applied to already cycling T cells, suggesting that both purine and pyrimidine nucleotides are required for survival of cells committed into S phase. These findings reveal a hitherto unknown role of purine and pyrimidine de novo synthesis in regulating cell cycle progression and maintaining survival of activated T lymphocytes.  相似文献   

6.
Large-scale preparation of 5-bromo-1-mesyluracil (BMsU) 4 has been optimized. BMsU was synthesized by condensation of silylated 5-bromouracil and MsCl in acetonitrile or by the reaction of 5-bromouracil with MsCl in pyridine. The same product was obtained by bromination of 1-mesyluracil. The purpose of this study was to elucidate the effects of BMsU on the biosynthetic activity of tumor cell enzymes involved in DNA, RNA and protein syntheses, and in de novo and salvage pyrimidine and purine syntheses. Investigations were performed in vitro on human cervix carcinoma cells (HeLa). BMsU displayed inhibitory effects on DNA and RNA syntheses in HeLa cells after 24 h of treatment. De nova biosynthesis of pyrimidine and purine was also affected. Antitumor activity of BMsU is closely associated with its inhibitory activity on the enzymes that play an important role in the metabolism of tumor cells. In vivo antitumor activity of BMsU was also investigated. The model used in investigations was a mouse anaplastic mammary carcinoma transplanted into the thigh of the right leg of CBA mice. Significant reduction in tumor growth time was achieved with BmsU administered at a dose of 50 mg/kg.  相似文献   

7.
Large-scale preparation of 5-bromo-1-mesyluracil (BMsU) 4 has been optimized. BMsU was synthesized by condensation of silylated 5-bromouracil and MsCl in acetonitrile or by the reaction of 5-bromouracil with MsCl in pyridine. The same product was obtained by bromination of 1-mesyluracil. The purpose of this study was to elucidate the effects of BMsU on the biosynthetic activity of tumor cell enzymes involved in DNA, RNA and protein syntheses, and in de novo and salvage pyrimidine and purine syntheses. Investigations were performed in vitro on human cervix carcinoma cells (HeLa). BMsU displayed inhibitory effects on DNA and RNA syntheses in HeLa cells after 24 h of treatment. De nova biosynthesis of pyrimidine and purine was also affected. Antitumor activity of BMsU is closely associated with its inhibitory activity on the enzymes that play an important role in the metabolism of tumor cells. In vivo antitumor activity of BMsU was also investigated. The model used in investigations was a mouse anaplastic mammary carcinoma transplanted into the thigh of the right leg of CBA mice. Significant reduction in tumor growth time was achieved with BmsU administered at a dose of 50 mg/kg.  相似文献   

8.
The ability of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells to drive their total purine requirements from inosine 5'-monophosphate, inosine, or hypoxanthine was compared. Inosine 5'-monophosphate first must be converted to inosine by the action of the enzyme ecto-5'-nucleotidase before it can be transported into the cell; inosine and hypoxanthine, however, can be transported directly. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and to make the cells dependent on an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 30 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA or [3H]leucine incorporation into protein at rates equal to that of untreated control cultures. Similar results were found when azaserine was used to inhibit purine synthesis de novo, and thus DNA synthesis. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells, and suggest that this enzyme may be important for purine salvage when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

9.
Intact cells of Myxococcus xanthus were examined for de novo purine synthesis and salvage utilization. The cellular uptake rates of radioactive glycine (de novo purine precursor), adenine, and guanine were measured, and thin-layer chromatography and radioautography were used to examine cell extracts for de novo synthesized purine nucleotides. Intact vegatative cells, glycerol-induced myxospores, and germinating cells of M. xanthus CW-1 were able to carry out de novo purine and salvage synthesis. Germinating cells and glycerol-induced myxospores were metabolically more active or as active as vegetative cells with respect to purine anabolism. We conclude that M. xanthus is capable of synthesizing purine nucleotides and salvaging purines throughout the glycerol version of its life cycle.  相似文献   

10.
The isolation and characterization of a mutant murine T-cell lymphoma (S49) with altered purine metabolism is described. This mutant, AU-100, was isolated from a mutagenized population of S49 cells by virtue of its resistance to 0.1 mM 6-azauridine in semisolid agarose. The AU-100 cells are resistant to adenosine mediated cytotoxicity but are extraordinarily sensitive to killing by guanosine. High performance liquid chromatography of AU-100 cell extracts has demonstrated that intracellular levels of GTP, IMP, and GMP are all elevated about 3-fold over those levels found in wild type cells. The AU-100 cells also contain an elevated intracellular level of pyrophosphoribosylphosphate (PPriboseP), which as in wild type cells is diminished by incubation of AU-100 cells with adenosine. However AU-100 cells synthesize purines de novo at a rate less than 35% of that found in wild type cells. In other growth rate experiments, the AU-100 cell line was shown to be resistant to 6-thioguanine and 6-mercaptopurine. Levels of hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) measured in AU-100 cell extracts, however, are 50-66% greater than those levels of HGPRTase found in wild type cell extracts. Nevertheless this mutant S49 cell line cannot efficiently incorporate labeled hypoxanthine into nucleotides since the salvage enzyme HGPRTase is inhibited in vivo. The AU-100 cell line was found to be 80% deficient in adenylosuccinate synthetase, but these cells are not auxotrophic for adenosine or other purines. The significant alterations in the control of purine de novo and salvage metabolism caused by the defect in adenylosuccinate synthetase are mediated by the resulting increased levels of guanosine nucleotides.  相似文献   

11.
The comprehensive studies of purine nucleotide metabolism were done in nonstimulated and phytohemagglutinin (PHA)-stimulated human peripheral blood T lymphocytes. Nonstimulated lymphocytes synthesize nucleotides in two alternative pathways: via biosynthesis de novo and salvage pathways. Although synthesis of triphosphonucleosides in unstimulated lymphocytes was the predominant pathway, interconversion of monophosphonucleosides was also active. Exposure of cells to PHA affects differently various pathways of nucleotide metabolism. The most marked changes observed were rapid activation of purine salvage within minutes after exposure to PHA, and significant increase of 5-phosphoribosyl-1-pyrophosphate levels. In addition, significant increases were found in de novo purine biosynthesis, nucleotide interconversions, and RNA and DNA synthesis, whereas catabolism of nucleotides remained unchanged. These results indicate that PHA activation of T lymphocytes causes a rapid synthesis of nucleotides which may be required immediately for increases in energy metabolism and later as the precursors of nucleic acid synthesis.  相似文献   

12.
Since de‐novo synthesis of pyrimidine nucleotides is coupled to the mitochondrial respiratory chain (RC) via dehydroorotic acid dehydrogenase (DHODH), respiratory chain dysfunction should impair pyrimidine synthesis. To investigate this, we used specific RC inhibitors, Antimycin A and Rotenone, to treat primary human keratinocytes and 143B cells, a human osteosarcoma cell line, in culture. This resulted in severe impairment of de novo pyrimidine nucleotide synthesis. The effects of RC inhibition were not restricted to pyrimidine synthesis, but concerned purine nucleotides, too. While the total amount of purine nucleotides was not diminished, they were significantly broken down from triphosphates to monophosphates, reflecting impaired mitochondrial ATP regeneration. The effect of Rotenone was similar to that of Antimycin A. This was surprising since Rotenone inhibits complex I of the respiratory chain, which is upstream of ubiquinone where DHODH interacts with the RC. In order to avoid unspecific effects of Rotenone, we examined the consequences of a mitochondrial DNA mutation that causes a specific complex I defect. The effect was much less pronounced than with Rotenone, suggesting that complex I inhibiton cannot fully explain the marked effect of Rotenone on pyrimidine nucleotide synthesis.  相似文献   

13.
The pyrimidine metabolism of Tritrichomonas foetus (KV 1) was studied using whole cells and cell homogenates. Pyrimidines and pyrimidine nucleosides were readily incorporated into nucleic acids. Orotate and aspartate were not incorporated into pyrimidine bases. Enzymes of the pyrimidine salvage pathway (i.e., thymidine and uridine phosphorylases and uridine kinase) were detected in trophozoite homogenates, but the activities of de novo pyrimidine synthesis enzymes (i.e., carbamoylphosphate synthase, aspartate transcarbamoylase, dihydroorotase and dihydroorotate dehydrogenase) were below the level of detection in these same homogenates. The evidence presented supports the proposal that T. foetus is incapable of synthesizing pyrimidines de novo but is capable of salvaging preformed pyrimidines and pyrimidine nucleosides from the growth medium and that enzymes of this parasite's pyrimidine salvage pathway are not organelle-associated.  相似文献   

14.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

15.
It has been proposed that the clinical utility of methotrexate (MTX) in the treatment of rheumatoid arthritis may be due, in part, to inhibition of 5-amino imidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT) by polyglutamated forms of MTX. AICARFT is the second folate dependent enzyme in de novo purine biosynthesis. In this study, the effects of MTX on de novo purine biosynthesis as well as total nucleotide pools were evaluated in both the human T cell line, CEM, and phytohemagglutinin-activated normal human T lymphocytes. De novo synthesized purines were metabolically labeled with 14C-glycine after MTX treatment and analyzed by HPLC. In normal T cells, MTX produced a dose-dependent reduction in de novo adenosine and guanosine pools with maximal effects (>50%) at 1 microM MTX. In CEM cells, de novo purine synthesis was almost completely blocked by 1 microM MTX. Total purine pools were also reduced in both cell types after MTX treatment. Since 1 microM MTX caused almost complete growth inhibition in CEM cells, we evaluated whether growth could be reconstituted with exogenous purine bases and pyrimidine nucleosides which can be utilized via salvage pathways. The combination of hypoxanthine and thymidine substantially reversed growth inhibition with 1 microM MTX in CEM cells. Taken together, these results demonstrate that MTX inhibits de novo nucleotide synthesis in T cells and suggest that AICARFT inhibition may be one aspect of the multi-site mechanism of MTX action in the treatment of rheumatoid arthritis.  相似文献   

16.
Plasmodium falciparum, the causative agent of the most lethal form of human malaria, is incapable of de novo purine synthesis, and thus, purine acquisition from the host is an indispensable nutritional requirement. This purine salvage process is initiated by the transport of preformed purines into the parasite. We have identified a gene encoding a nucleoside transporter from P. falciparum, PfNT1, and analyzed its function and expression during intraerythrocytic parasite development. PfNT1 predicts a polypeptide of 422 amino acids with 11 transmembrane domains that is homologous to other members of the equilibrative nucleoside transporter family. Southern analysis and BLAST searching of The Institute for Genomic Research (TIGR) malaria data base indicate that PfNT1 is a single copy gene located on chromosome 14. Northern analysis of RNA from intraerythrocytic stages of the parasite demonstrates that PfNT1 is expressed throughout the asexual life cycle but is significantly elevated during the early trophozoite stage. Functional expression of PfNT1 in Xenopus laevis oocytes significantly increases their ability to take up naturally occurring D-adenosine (K(m) = 13.2 microM) and D-inosine (K(m) = 253 microM). Significantly, PfNT1, unlike the mammalian nucleoside transporters, also has the capacity to transport the stereoisomer L-adenosine (K(m) > 500 microM). Inhibition studies with a battery of purine and pyrimidine nucleosides and bases as well as their analogs indicate that PfNT1 exhibits a broad substrate specificity for purine and pyrimidine nucleosides. These data provide compelling evidence that PfNT1 encodes a functional purine/pyrimidine nucleoside transporter whose expression is strongly developmentally regulated in the asexual stages of the P. falciparum life cycle. Moreover, the unusual ability to transport L-adenosine and the vital contribution of purine transport to parasite survival makes PfNT1 an attractive target for therapeutic evaluation.  相似文献   

17.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

18.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

19.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

20.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号