首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particular set of traits. Recent advances in energetic modeling have provided excellent data on energy intake and costs leading to growth, reproduction, and other life‐history parameters; these in turn have consequences for survivorship at all life‐history stages, and thus for fitness. Components of fitness alone (performance measures) are useful in determining organism response to changing conditions, but are often not good predictors of fitness; they can differ in both form and magnitude, as demonstrated in our model. Here, we combine an energetics model for growth and allocation with a matrix model that calculates population growth rate for a group of individuals with a particular set of traits. We use intertidal mussels as an example, because data exist for some of the important energetic and life‐history parameters, and because there is a hypothesized energetic trade‐off between byssus production (affecting survivorship), and energy used for growth and reproduction. The model shows exactly how strong this trade‐off is in terms of overall fitness, and it illustrates conditions where fitness components are good predictors of actual fitness, and cases where they are not. In addition, the model is used to examine the effects of environmental change on this trade‐off and on both fitness and on individual fitness components.  相似文献   

2.
Multiple factors determine diet selection of herbivores. However, in many diet studies selection of single nutrients is studied or optimization models are developed using only one currency. In this paper, we use linear programming to explain diet selection by African elephant based on plant availability and nutrient and deterrent content over time. Our results indicate that elephant at our study area maximized intake of phosphorus throughout the year, possibly in response to the deficiency of this nutrient in the region. After adjusting the model to incorporate the effects of this deficiency, elephant were found to maximize nitrogen intake during the wet season and energy during the dry season. We reason that the increased energy requirements during the dry season can be explained by seasonal changes in water availability and forage abundance. As forage abundance decrease into the dry season, elephant struggle to satisfy their large absolute food requirements. Adding to this restriction is the simultaneous decrease in plant and surface water availability, which force the elephant to seek out scarce surface water sources at high energy costs. During the wet season when food becomes more abundant and energy requirements are satisfied easier, elephant aim to maximize nitrogen intake for growth and reproduction. Our study contributes to the emerging theory on understanding foraging for multiple resources.  相似文献   

3.
We compare the implications of determinate vs. indeterminate growth of a parthenogenetic iteroparous ectotherm at constant food density in the context of the dynamic energy budget theory, which specifies the tight links between life history traits, such as feeding, aging, growth and reproduction. We do a comparative analysis using, as measure of fitness, the life span reproduction, the population growth rate, and the conversion efficiency of food to biomass. When extrinsic mortality is constant, indeterminate growth cannot maximize fitness if measured by the population growth rate or the conversion efficiency, except when mortality is low, in which case both types of animals are similar. If the fitness measure is life span reproduction, indeterminate growth maximizes fitness even with constant mortality, provided it is not very high. When mortality decreases with size, indeterminate growth maximizes fitness for almost all measures of fitness. Finally, we suggest an evolutionary link between allocation strategies and expected life span. In populations of long living species, each type of animal can establish in the population of the other. In populations of short living species, determinate growers can invade, and displace, a population of indeterminate ones. However, when the mortality risk of organisms with small size is much higher than those of large size, indeterminate growers can be superior.  相似文献   

4.
Diet affects both lifespan and reproduction [1-9], leading to the prediction that the contrasting reproductive strategies of the sexes should result in sex-specific effects of nutrition on fitness and longevity [6, 10] and favor different patterns of nutrient intake in males and females. However, males and females share most of their genome and intralocus sexual conflict may prevent sex-specific diet optimization. We show that both male and female longevity were maximized on a high-carbohydrate low-protein diet in field crickets Teleogryllus commodus, but male and female lifetime reproductive performances were maximized in markedly different parts of the nutrient intake landscape. Given a choice, crickets exhibited sex-specific dietary preference in the direction that increases reproductive performance, but this sexual dimorphism in preference was incomplete, with both sexes displaced from the optimum diet for lifetime reproduction. Sexes are, therefore, constrained in their ability to reach their sex-specific dietary optima by the shared biology of diet choice. Our data suggest that sex-specific selection has thus far failed fully to resolve intralocus sexual conflict over diet optimization. Such conflict may be an important factor linking nutrition and reproduction to lifespan and aging.  相似文献   

5.
While the theory of natural selection posits that those behaviorsmaximizing reproductive success ("fitness") tend to survive,behavioral ecologists more frequently explain observed behaviorsas maximizing some "currency" on which fitness depends. In thecase of optimal foraging theory, for example, the currency isthe long-term rate of energy intake. This currency approachis adopted because little is known about the form of the fitnessfunction itself. A weakness of the approach is that reproductivesuccess often depends on more than one currency and behaviorswhich augment one currency may reduce another. We explain howto deduce from the hypothesis of fitness maximization testablequalitative and quantitative predictions about behavior whensuch trade-offs exist among currencies and little is known aboutthe fitness function. The methodology we describe is centralto microeconomic theory, and its usefulness explains the centralrole accorded "efficiency conditions" in that theory. We expoundthe approach entirely in terms of two biological examples: apreliminary example involving flower replacement by a perennialand a more elaborate one involving over-winter hoarding by afemale mammal.  相似文献   

6.
Summary Columbian ground squirrels (Spermophilus columbianus) were examined for ability to select a diet that maximizes daily energy intake (optimal diet) under free-living field conditions. The optimal diet for each squirrel was determined given constraints (e.g. body size, feeding time) on individual foraging behavior. Most squirrels (63%) consumed a diet not significantly different from one that would maximize their daily energy intake. The remainder (37%) approached an energy maximized diet but appeared to make some incorrect foraging decisions. Both males and females appeared to approach energy maximized diets. An individual's deviation from its optimal diet is relatively constant within a season and not significantly affected by immediate environmental influences such as food abundance, thermal conditions and social environment. The energy cost of deviating from an optimal diet may be large enough to affect fitness. These results suggest that the ability to select an optimal diet can be viewed as a behavioral trait that might be subject to natural selection.  相似文献   

7.
While it is known that genetic variation for photosynthetic and growth traits exists in natural populations, the functional significance of this variation remains unclear, particularly for photosynthetic traits. To test the hypothesis that photosynthetic rate has direct effects on reproduction as well as contributing indirectly to reproduction through effects on growth, we compared wild-type Amaranthus hybridus families to those with a single gene mutation that confers a lower photosynthetic rate. Wild-type and photosynthetic-mutant families were grown in competitive and non-competitive environments and we compared size, biomass allocation, architecture, and reproduction at three developmental stages. To assess the contributions of individual growth traits to reproduction, we calculated covariances between standardized traits and relative fitness (selection differentials), and compared selection between the two biotypes. Finally, we used path analysis to calculate the indirect effects of photosynthetic rate on fitness through growth. The size, allocation, and architecture of photosynthetic mutants did not differ from those of the wild type in either the competitive or non-competitive environment, with the exception that they were taller by the last developmental stage. However, the reproductive biomass of the photosynthetic mutants was significantly reduced compared to the wild type. In the competitive environment, the wild type achieved greater fitness because, while similar in size to the mutants, at any given size it produced more reproductive biomass. This suggests that photosynthetic rate affected the linkage between plant size and reproduction and is evidence of an indirect contribution to fitness. In the non-competitive environment, there were fewer differences in selection differentials between the two plant genotypes, suggesting fewer indirect effects. Path analysis showed that variation in photosynthetic biotype had indirect effects on reproductive biomass, via growth traits, and that there were no direct effects. Photosynthetic rate appears to have fitness consequences primarily through multiple contributions to growth throughout development. Received: 27 March 1998 / Accepted: 28 August 1998  相似文献   

8.
It is widely assumed that terrestrial food webs are built on a nitrogen-limited base and consequently herbivores must compensate through selection of high-protein foods and efficient nitrogen retention. Like many folivorous primates, gorillas' diet selection supports this assumption, as they apparently prefer protein-rich foods. Our study of mountain gorillas (Gorilla beringei) in Uganda revealed that, in some periods, carbohydrate-rich fruits displace a large portion of protein-rich leaves in their diet. We show that non-protein energy (NPE) intake was invariant throughout the year, whereas protein intake was substantially higher when leaves were the major portion of the diet. This pattern of macronutrient intake suggests that gorillas prioritize NPE and, to achieve this when leaves are the major dietary item, they over-eat protein. The concentrations of protein consumed in relation to energy when leaves were the major portion of the diet were close to the maximum recommended for humans and similar to high-protein human weight-loss diets. By contrast, the concentrations of protein in relation to energy when gorillas ate fruit-dominated diets were similar to those recommended for humans. Our results question the generality of nitrogen limitation in terrestrial herbivores and provide a fascinating contrast with human macronutrient intake.  相似文献   

9.
Sexual selection may cause dietary requirements for reproduction to diverge across the sexes and promote the evolution of different foraging strategies in males and females. However, our understanding of how the sexes regulate their nutrition and the effects that this has on sex‐specific fitness is limited. We quantified how protein (P) and carbohydrate (C) intakes affect reproductive traits in male (pheromone expression) and female (clutch size and gestation time) cockroaches (Nauphoeta cinerea). We then determined how the sexes regulate their intake of nutrients when restricted to a single diet and when given dietary choice and how this affected expression of these important reproductive traits. Pheromone levels that improve male attractiveness, female clutch size and gestation time all peaked at a high daily intake of P:C in a 1:8 ratio. This is surprising because female insects typically require more P than males to maximize reproduction. The relatively low P requirement of females may reflect the action of cockroach endosymbionts that help recycle stored nitrogen for protein synthesis. When constrained to a single diet, both sexes prioritized regulating their daily intake of P over C, although this prioritization was stronger in females than males. When given the choice between diets, both sexes actively regulated their intake of nutrients at a 1:4.8 P:C ratio. The P:C ratio did not overlap exactly with the intake of nutrients that optimized reproductive trait expression. Despite this, cockroaches of both sexes that were given dietary choice generally improved the mean and reduced the variance in all reproductive traits we measured relative to animals fed a single diet from the diet choice pair. This pattern was not as strong when compared to the single best diet in our geometric array, suggesting that the relationship between nutrient balancing and reproduction is complex in this species.  相似文献   

10.
Theory predicts that temporal variability plays an important role in the evolution of life histories, but empirical studies evaluating this prediction are rare. In constant environments, fitness can be measured by the population growth rate lambda, and the sensitivity of lambda to changes in fitness components estimates selection on these traits. In variable environments, fitness is measured by the stochastic growth rate lambda(S), and stochastic sensitivities estimate selection pressure. Here we examine age-specific schedules for reproduction and survival in a barn owl population (Tyto alba). We estimated how temporal variability affected fitness and selection, accounting for sampling variance. Despite large sample sizes of old individuals, we found no strong evidence for senescence. The most variable fitness components were associated with reproduction. Survival was less variable. Stochastic simulations showed that the observed variation decreased fitness by about 30%, but the sensitivities of lambda and lambda(S) to changes in all fitness components were almost equal, suggesting that temporal variation had negligible effects on selection. We obtained these results despite high observed variability in the fitness components and relatively short generation time of the study organism, a situation in which temporal variability should be particularly important for natural selection and early senescence is expected.  相似文献   

11.
Models of animal dispersion between habitat patches that differ in resource density assume that animals maximize their fitness by maximizing the rate at which they consume resources. How valid is this assumption? Studies on wading birds have been central to the application of dispersion models to predator-prey systems. However, these birds do not always attempt to maximize their rate of energy intake, implying that maximization involves costs as well as benefits. Overwintering oystercatchers feeding on cockles in the Burry Inlet, South Wales, do not consume the larger more energetically profitable cockles even though consuming these prey would increase their rate of energy intake. This paper tests the hypothesis that maximizing energy intake involves a trade-off with exposure to helminth parasites. Cockles are important intermediate hosts for helminth parasites, for which oystercatchers are the definitive host. The helminth intensity of cockles increased significantly with cockle size. A functional response model was used to examine how size selection by the birds influenced energy intake and the ingestion rate of parasites. To maximize energy intake birds should selectively consume the larger size classes, but to minimize the ingestion rate of parasites they should consume the smallest size classes. In the wild, birds selectively consumed intermediate size classes, which could represent a compromise between these conflicting demands. The implications for animal dispersion models are discussed.  相似文献   

12.
We model direct fitness benefits of genetic mosaicism for a long-lived tree in coevolution with a short-lived herbivore to test four hypotheses: that mosaicism reduces selection on the herbivore for resistance to plant defenses; that module-level selection allows the individual tree to adapt to its herbivore; and that this benefits the tree population, increasing average tree fitness and reducing local adaptation of the herbivore. We show that: mosaicism does not sufficiently reduce selection for resistance in the herbivore to benefit the tree; that individual trees do benefit from module-level selection when somatic mutation introduces new defenses; and that mosaicism does reduce local adaptation in the herbivore, which increases average tree fitness. These results are robust to varying genetic assumptions of dominance and the somatic mutation rate, but only hold for sufficiently long-lived trees with relatively strong selection. We also show that a mixed reproductive strategy of primarily asexual reproduction interspersed with occasional sexual reproduction is effective in coevolving with the herbivore, as it maintains beneficial allele combinations. Finally, we argue that intraorganismal genetic heterogeneity need not threaten the integrity of the individual and may be adaptive when selection acts concordantly between levels.  相似文献   

13.
In some ecological settings, an individual's fitness depends on both its own phenotype (individual-level selection) as well as the phenotype of the individuals with which it interacts (group-level selection). Using contextual analysis to measure multilevel selection in experimental stands of Arabidopsis thaliana, we detected significant linear selection that reversed across individual versus group levels for two composite phenotypic traits, "size" and "elongation." In both cases, selection at the individual level acted to increase values of these traits, presumably due to their positive effect on resource acquisition. Group selection favored decreased values of the same traits. Nonlinear selection was weak but significant in several cases, including stabilizing selection on developmental rate; individuals with very rapid development likely had lower than average fitness due to their reduced resource level at reproduction, while very delayed reproduction may have resulted in lower fitness if prolonged competition for resources reduced overall environmental quality and fitness of all individuals in a group. Under this scenario, stabilizing selection on individual traits is evidence of selection at the group level. Significant density-dependent selection suggests that a threshold density must be reached before group selection acts. Below this threshold, selection at the individual level affects phenotypic evolution more strongly than group selection. A second experiment measured multilevel selection in progeny stands of the original experimental plants. Multilevel selection again acted antagonistically on a composite trait that included size and elongation as well as on an architectural trait, branch production. The magnitude of individual versus group selection was relatively similar in the progeny generation, and the observed balance of individual versus group selection across densities is generally consistent with the hypotheses that multilevel selection can contribute to phenotypic evolution and to important demographic phenomena, including soft selection and the "law of constant yield."  相似文献   

14.
The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early‐life over late‐life reproduction. Studies on natural vertebrate populations show early reproduction may impair later‐life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early‐life reproduction and female age‐specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age‐specific fecundity and offspring survival, but significantly impaired a female's own later‐life survival. Despite the negative effects of early reproduction on late‐life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade‐off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later‐life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi‐)captive breeding programmes of this endangered species.  相似文献   

15.
The Rate of Compensatory Evolution   总被引:8,自引:1,他引:7       下载免费PDF全文
W. Stephan 《Genetics》1996,144(1):419-426
A two-locus model is presented to analyze the evolution of compensatory mutations occurring in stems of RNA secondary structures. Single mutations are assumed to be deleterious but harmless (neutral) in appropriate combinations. In proceeding under mutation pressure, natural selection and genetic drift from one fitness peak to another one, a population must therefore pass through a valley of intermediate deleterious states of individual fitness. The expected time for this transition is calculated using diffusion theory. The rate of compensatory evolution, k(c), is then defined as the inverse of the expected transition time. When selection against deleterious single mutations is strong, k(c) depends on the recombination fraction r between the two loci. Recombination generally reduces the rate of compensatory evolution because it breaks up favorable combinations of double mutants. For complete linkage, k(c) is given by the rate at which favorable combinations of double mutants are produced by compensatory mutation. For r>0, k(c) decreases exponentially with r. In contrast, k(c) becomes independent of r for weak selection. We discuss the dynamics of evolutionary substitutions of compensatory mutants in relation to WRIGHT's shifting balance theory of evolution and use our results to analyze the substitution process in helices of mRNA secondary structures.  相似文献   

16.
Lifetime reproductive success and timing of reproduction are key components of life-history evolution. To understand the evolution of reproductive schedules, it is important to use a measure of fitness that is sensitive both to reproductive quantity and reproductive timing. There is a contradiction between the theory, which mainly focuses on the rate measures of fitness (r and lambda), and empirical studies, which mainly use lifetime reproductive success (LRS), or some of its correlates, as a fitness measure. We measured phenotypic selection on age-specific fertilities in three pre-modern human populations using individually estimated finite rate of increase, er (lambda). We found that lambda and lifetime reproductive success ranked individuals differently according to their fitness: for example, a female giving birth to four children at a young age may actually have a higher fitness than a female giving birth to six children at a greater age. Increase in fertility at the young age classes (15-19 years) was favoured by selection, but the intensity of selection on fertility was higher in the older age classes (20-30 years), where the variance in fertility was highest. Hence, variation in fertility in the older age classes (20-30) was actually responsible for most of the observed variation in fitness among the individuals. Additionally, more than 90% of variation in fitness (lambda) was attributable to individual differences in LRS, whereas only about 5% of all variation in fitness was due to differences in the reproductive schedule. The rate-sensitive fitness measure did not significantly challenge the importance of total fertility as a component of fitness in humans. However, the rate-sensitive measure clearly allowed more accurate estimation of individual fitness, which may be important for answering some more specific questions.  相似文献   

17.
Epidemiological studies of diet and disease rely on the accurate determination of dietary intake and subsequent estimates of nutrient exposure. Although methodically developed and tested, the instruments most often used to collect self-reported intake data are subject to error. It had been assumed that this error was only random in nature; however, an increasing body of literature suggests that systematic error in the reporting of true dietary intake exists as well. Here, we review studies in which dietary intake by self report was determined while energy expenditure was simultaneously measured using the doubly labeled water (DLW) method. In seeking to establish the relative accuracy of each instrument to capture true habitual energy intake, we conclude that none of the self-reported intake instruments demonstrates greater accuracy against DLW. Instead, it is evident that the physical and psychological characteristics of study participants play a significant role in the underreporting bias observed in these studies. Further research is needed to identify underreporters and to determine how to account for this bias in studies of diet and health.  相似文献   

18.
Metabolic theory predicts that maintenance rate increases faster with animal body size than food intake rate, such that the critical resource density R* at which ingested energy exactly covers maintenance requirements increases with body size. Small-sized (low R*) juveniles may thus exclude their larger-sized (high R*) parents in resource competition, resulting in apparent semelparous life histories and non-overlapping generations. However, empirical support for such a competition-driven semelparity (CDS) remains scarce. Here, we report a high consistency of cohort dynamics with CDS in wild medaka (Oryzias latipes). As predicted by the theory, there was a strong juvenile-adult diet overlap, and all individuals died after reproduction as semelparous age-1 adults, synchronous with a rapid somatic growth of age-0 juveniles into the adult stage and with dropping abundances of zooplankton food resources. In addition to the theory, we found evidence for increased reproductive allocation under food stress, translating into immune depression and elevated parasite prevalence. Therefore, CDS in medaka emerges both from intercohort competitive exclusion and from food-dependent energy reallocation from maintenance to reproduction, the later presumably representing an adaptive response to the former. The literature data show that the strengths of both intercohort competition and reproductive allocation increase at higher temperatures in many ectotherms, pointing to climate warming as a potentially powerful magnifier of CDS in the wild.  相似文献   

19.
Most species of rotifers have a combination of sexual and asexual reproduction, with sexual reproduction resulting in resting eggs, which can lay dormant for long periods. The occurrence of sexual reproduction affects population dynamics through the temporary presence of male rotifers, and a reduction in the growth of the number of female rotifers. A previously published, individual-based model used dynamic energy budget theory to describe rotifer food intake, growth, egg production, and mortality, but assumed asexual reproduction only. In the current study, we have expanded the model to describe the entire reproductive cycle of the rotifers, making it usable for investigating relationships, such as those between the signal triggering mictic egg production, and the timing and number of resting eggs produced. The model is intended for use in predicting the specific future development of cultures, for instance, as a process model in rotifer or resting egg production for aquaculture. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

20.
The evolution of growth trajectories: what limits growth rate?   总被引:1,自引:0,他引:1  
According to life‐history theory, growth rates are subject to strong directional selection due to reproductive and survival advantages associated with large adult body size. Yet, growth is commonly observed to occur at rates lower than the maximum that is physiologically possible and intrinsic growth rates often vary among populations. This implies that slower growth is favoured under certain conditions. Realized growth rate is thus the result of a compromise between the costs and advantages of growing rapidly, and the optimal rate of growth is not equivalent to the fundamental maximum rate. The ecological and evolutionary factors influencing growth rate are reviewed, with particular emphasis on how growth might be constrained by direct fitness costs. Costs of accelerating growth might contribute to the variance in fitness that is not attributable to age or size at maturity, as well as to the variation in life‐history strategies observed within and among species. Two main approaches have been taken to study the fitness trade‐offs relating to growth rate. First, environmental manipulations can be used to produce treatment groups with different rates of growth. Second, common garden experiments can be used to compare fitness correlates among populations with different intrinsic growth rates. Data from these studies reveal a number of potential costs for growth over both the short and long term. In order to acquire the energy needed for faster growth, animals must increase food intake. Accordingly, in many taxa, the major constraint on growth rate appears to arise from the trade‐off between predation risk and foraging effort. However, growth rates are also frequently observed to be submaximal in the absence of predation, suggesting that growth trajectories also impact fitness via other channels, such as the reallocation of finite resources between growth and other traits and functions. Despite the prevalence of submaximal growth, even when predators are absent, there is surprisingly little evidence to date demonstrating predator‐independent costs of growth acceleration. Evidence that does exist indicates that such costs may be most apparent under stressful conditions. Future studies should examine more closely the link between patterns of resource allocation to traits in the adult organism and lifetime fitness. Changes in body composition at maturation, for example, may determine the outcome of trade‐offs between reproduction and survival or between early and late reproduction. A number of design issues for studies investigating costs of growth that are imposed over the long term are discussed, along with suggestions for alternative approaches. Despite these issues, identifying costs of growth acceleration may fill a gap in our understanding of life‐history evolution: the relationships between growth rate, the environment, and fitness may contribute substantially to the diversification of life histories in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号