首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TheRhizobium leguminosarum biovartrifolii symbiotic plasmid pRtr5a has been transferred toR. leguminosarum biovarphaseoli RCR 3644-S1. The transconjugant selection had been done byTrifolium pratense plants. All transconjugants lacked the resident pSym, but had complete pRtr5a, and were Fix+ onT. repens andT. alexandrinum, Fix onT. subterraneum, and formed a few small white and Fix nodules onPhaseolus vulgaris. It is shown that this nodulation onP. vulgaris is due to pRtr5a. The presence of pRtr5a and/or the passage throughTrifolium pratense nodules provoke(s) the recipient strain symbiotic plasmid loss.  相似文献   

2.
Rhizobium trifolii T37 contains at least three plasmids with sizes of greater than 250 megadaltons. Southern blots of agarose gels of these plasmids probed with Rhizobium meliloti nif DNA indicated that the smallest plasmid, pRtT37a, contains the nif genes. Transfer of the Rhizobium leguminosarum plasmid pJB5JI, which codes for pea nodulation and the nif genes and is genetically marked with Tn5, into R. trifolii T37 generated transconjugants containing a variety of plasmid profiles. The plasmid profiles and symbiotic properties of all of the transconjugants were stably maintained even after reisolation from nodules. The transconjugant strains were placed into three groups based on their plasmid profiles and symbiotic properties. The first group harbored a plasmid similar in size to pJB5JI (130 megadaltons) and lacked a plasmid corresponding to pRtT37a. These strains formed effective nodules on peas but were unable to nodulate clover and lacked the R. trifolii nif genes. This suggests that genes essential for clover nodulation as well as the R. trifolii nif genes are located on pRtT37a and have been deleted. The second group harbored hybrid plasmids formed from pRtT37a and pJB5JI which ranged in size from 140 to ca. 250 megadaltons. These transconjugants had lost the R. leguminosarum nif genes but retained the R. trifolii nif genes. Strains in this group nodulated both peas and clover but formed effective nodules only on clover. The third group of transconjugants contained a hybrid plasmid similar in size to pRtT37b. These strains contained the R. trifolii and R. leguminosarum nif genes and formed N2-fixing nodules on both peas and clover.  相似文献   

3.
Abstract The symbiotic plasmid pRHc1J of Rhizobium 'hedysari' has been transferred to different Rhizobium species. It expression and incompatibility with the recipient resident plasmids as well as the effect of the host plants on the selection of Rhizobium symbiotic information has been studied. When the symbiotic plasmid pRHc1J was transferred to Nod+Fix+ Rhizobium species, it underwent specific deletions, either spontaneously or after the passage of transconjugants through plants, leading to the loss of some essential nod genes.  相似文献   

4.
The symbiotic plasmid (pSym) of Rhizobium leguminosarum bv. trifolii 4S5, which carries Tn5-mob, was successfully transferred into Agrobacterium tumefaciens A136 by using a conjugation method. The resulting transconjugants induced the development of ineffective nitrogen-fixing nodules on the roots of white clover seedlings. Depending on the manner in which the pSym was retained, the transconjugants were divided into two groups of strains, Afp and Afcs. pSym was retained as a plasmid in the Afp strains but was integrated into the int gene encoding a phage-related integrase on the linear chromosome of A. tumefaciens A136 in strain Afcs1 (one of the Afcs strains) to form a symbiosis island. Conjugation was performed between strain Afcs1 and R. leguminosarum bv. trifolii H1 (a pSym-cured derivative of wild-type strain 4S), and the Rhizobium H1tr strains were screened as transconjugants. Eighteen of the H1tr strains induced effective nitrogen-fixing nodules on the roots of the host plants. pSym was transferred into all of the transconjugants, except for strain H1tr1, at the same size as pSym of strain 4S5. In strain H1tr1, pSym was integrated into the chromosome as a symbiosis island. These data suggest that pSym can exist among Rhizobium and Agrobacterium strains both as a plasmid and as a symbiosis island with transposon mediation.  相似文献   

5.
The symbiotic plasmid of Rhizobium trifolii G1008 was mobilized to other Rhizobium strains and to Agrobacterium using Tn5-Mob, a transposon that confers on a host replicon the ability to be mobilized in trans by RP4. Incompatibility was observed between pSymG1008 and the hairy-root-inducing plasmid pRi1855. Agarose gel electrophoresis revealed that pRi1855 was eliminated as an autonomous element in the presence of pSymG1008 and its absence was correlated with loss of the ability to induce hairy root disease. This indicates a close ancestral relationship between a Rhizobium symbiotic plasmid and a plant pathogenic plasmid of Agrobacterium. pSymG1008 and pRi1855 can be assigned to the IncRh-3 incompatibility group. Furthermore, pSymG1008 was mobilized at low frequency to R. phaseoli 51E and the transconjugants isolated had lost the indigenous Sym plasmid and the ability to nodulate beans.  相似文献   

6.
Abstract All transposon-induced symbiotic mutants of Rhizobium described so far have been obtained using Tn 5 , which codes for kanamycin resistance (KmR). To enable genetic complementation studies, we tried to find an effective transposon carrying another resistance marker. We report here a method for the apparent random transposition in Rhizobium of Tn 1831 , which codes for resistance against spectinomycin (Sp), streptomycin (Sm) and mercury chloride. When the suicide plasmid pMP12 (RP4::Tn 1831 , Km::Mu) was transferred to Rhizobium , in almost all cases the exconjugants harbour a deleted transfer-deficient R plasmid. From this deleted R plasmid transposition occurred to self-transmissible Sym-plasmids of R. leguminosarum and R. trifolii . Using this method a number of Tn 1831 -induced symbiotic mutants of pRL1JI were isolated.  相似文献   

7.
Forty-five Rhizobium strains nodulating sulla (Hedysarum coronarium L.), isolated from plants grown in different sites in Menorca Island and southern Spain, were examined for plasmid content and the location and organization of nif (nitrogen fixation) and nod (nodulation) sequences. A great diversity in both number and size of the plasmids was observed in this native population of strains, which could be distributed among 19 different groups according to their plasmid profiles. No correlation was found between plasmid profile and geographical origin of the strains. In each strain a single plasmid ranging from 187 to 349 megadaltons hybridized to Rhizobium meliloti nifHD and nodD DNA, and in three strains the spontaneous loss of this plasmid resulted in the loss of the nodulation capacity. In addition to the symbiotic plasmid, 18 different cryptic plasmids were identified. A characteristic cryptic plasmid of >1,000 megadaltons was present in all strains. Total DNA hybridization experiments, with nifHD and portions of nodC and nodD genes (coding for common nodulation functions) from R. meliloti as probes, demonstrated that both the sequence and organization of nif and common nod genes were highly conserved within rhizobia nodulating sulla. Evidence for reiteration of nodD sequences and for linkage of nodC to at least one copy of nodD was obtained for all the strains examined. From these results we conclude that Rhizobium strains nodulating sulla are a homogeneous group of symbiotic bacteria that are closely related to the classical fast-growing group of rhizobia.  相似文献   

8.
T Mozo  E Cabrera  T Ruiz-Argüeso 《Plasmid》1990,23(3):201-215
The DNA region essential for replication and stability of a native plasmid (pTM5) from Rhizobium sp. (Hedysarum) has been identified and isolated within a 5.4-kb PstI restriction fragment. The isolation of this region was accomplished by cloning endonuclease-restricted pTM5 DNA into a ColE1-type replicon and selecting the recombinant plasmids containing the pTM5 replicator (pTM5 derivative plasmids) by their ability to replicate in Rhizobium. DNA homology studies revealed that pTM5-like replicons are present in cryptic plasmids from some Rhizobium sp. (Hedysarum) strains but not in plasmids from strains of other Rhizobium species or Agrobacterium tumefaciens. The pTM5 derivative plasmids were able to replicate in Escherichia coli and A. tumefaciens and in a wide range of Rhizobium species. On the basis of stability assays in the absence of antibiotic selective pressure, the pTM5 derivative plasmids were shown to be highly stable in both free-living and symbiotic cells of Rhizobium sp. (Hedysarum). The stability of these plasmids in other species of Rhizobium and in A. tumefaciens varied depending on the host and on the plasmid. Most pTM5 derivative plasmids tested showed significantly higher symbiotic stability than RK2 derivative plasmids pRK290 and pAL618 in Rhizobium sp. (Hedysarum), R. meliloti, and R. leguminosarum by. phaseoli. Consequently, we consider that the constructed pTM5 derivative plasmids are potentially useful as cloning vectors for Rhizobiaceae.  相似文献   

9.
We report here the formation of symbiotic plasmids (pSyms), by genetic recombination between rearranged pSyms, which lack symbiotic information, and resistance plasmids carrying parts of different symbiotic plasmids (R's). This recombination was found to occur both between plasmids derived from different Rhizobium phaseoli isolates, and between plasmids derived from strains obtained from the same original isolate. We also present evidence on the formation of a functional symbiotic plasmid by recombination of an R', carrying nif and nod genes from strain CFN42, and an indigenous plasmid present in this strain (pCFN42e), which was thought to be unrelated to its symbiotic plasmid (pCFN42d). These data are discussed with respect to the stability and transfer of Rhizobium symbiotic information.  相似文献   

10.
Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid.   总被引:13,自引:8,他引:5  
Different structural changes of the Sym plasmid were found in a Rhizobium phaseoli strain that loses its symbiotic phenotype at a high frequency. These rearrangements affected both nif genes and Tn5 mob insertions in the plasmid, and in some cases they modified the expression of the bacterium's nodulation ability. One of the rearrangements was more frequent in heat-treated cells, but was also found under standard culture conditions; other structural changes appeared to be related to the conjugal transfer of the plasmid.  相似文献   

11.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

12.
The Rhizobium trifolii symbiotic plasmid pRt5a was transferred to the fast-growing soybean strain USDA 194. Transconjugants carrying pRt5a were not able to nodulate clovers and one of the transconjugants had lost its smallest resident plasmid and did not fix nitrogen in soybean. Transconjugants of USDA 194 carrying pRt5a were able to transfer pRt5a back to a non-nodulating R. trifolii which inherited the symbiotic properties of the R. trifolii strain from which the plasmid was derived.  相似文献   

13.
Spontaneous mutants of Rhizobium trifolii 24AR5 which did not produce exopoly-saccharide were isolated. The non-mucoid mutants formed small white and ineffective nodules on both red and white clover. These nodules contained infection threads, but only a small number of bacteria were released into nodule cells, and bacteroids were rarely observed. The non-mucoid phenotype was not complemented by the symbiotic plasmid (pJB5JI) of Rhizobium leguminosarum.  相似文献   

14.
华癸中生根瘤菌(Mesorhizobium huakuii)7653R是分离自我国南方水稻田的一株根瘤菌,含有2个内源质粒:p7653Ra和p7653Rb,其中7653Rb是共生质粒.通过Tn5-sacB的插入方法来消除质粒,获得7653Rb消除的突变株7653RD.将豌豆根瘤菌T83K3的共生质粒pJB5JI导入7653R和7653RD中,盆栽结果表明含有pJB5JI的转移接合子7653R-197的竞争结瘤能力和共生固氮能力均高于7653R.pJB5JI不能恢复7653RD在紫云英上的结瘤能力.含有pJB5JI的7653RD可以在豌豆上结无效瘤,表明pJB5JI可以在7653R的染色体背景下表达其功能.对转移接合子中的质粒稳定性进行检测,结果表明pJB5JI在人工传代的情况下可以稳定存在,但经过共生之后发生了遗传分离,对转移接合子和出发菌株及分离菌株进行kan基因的PCR扩增,除了受体菌外其他菌株都可得到PCR产物,由此推测,pJB5JI可能部分或全部整合到了受体菌的染色体基因组中.  相似文献   

15.
Regulation of Syrm and Nodd3 in Rhizobium Meliloti   总被引:4,自引:0,他引:4       下载免费PDF全文
J. A. Swanson  J. T. Mulligan    S. R. Long 《Genetics》1993,134(2):435-444
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is an inducer-independent activator of nod operons. We previously observed that nodD3 carried on a multicopy plasmid required another closely linked gene, syrM, for constitutive nod operon expression. Here, we show that syrM activates expression of the nodD3 gene, and that nodD3 activates expression of syrM. The two genes constitute a self-amplifying positive regulatory circuit in both cultured Rhizobium and cells within the symbiotic nodule. We find little effect of plant inducers on the circuit or on expression of nodD3 carried on pSyma. This regulatory circuit may be important for regulation of nod genes within the developing nodule.  相似文献   

16.
A 200-megadalton plasmid was mobilized from Rhizobium japonicum USDA 191 to other Rhizobium strains either that cannot nodulate soybeans or that form Fix- nodules on certain cultivars. The symbiotic properties of the transconjugants indicate that both soybean specificity for nodulation and cultivar specificity for nitrogen fixation are plasmid encoded.  相似文献   

17.
A Rhizobium trifolii symbiotic plasmid specific gene library was constructed and the physical organisation of regions homologous to nifHDK, nifA and nod genes was determined. These symbiotic gene regions were localised to u 25 kb region on the sym-plasmid, pPN1. In addition four copies of a reiterated sequence were identified on this plasmid, with one copy adjacent to nifH. No rearrangement of these reiterated sequences was observed between R. trifolii bacterial and bacteroid DNA. Analysis of a deletion derivative of pPN1 showed that these sequences were spread over a 110 kb region to the left of nifA.  相似文献   

18.
The complete physical map of the symbiotic plasmid of Rhizobium leguminosarum bv. phaseoli strain CFN42 was established. The data support the concept that Rhizobium symbiotic genes are part of a complex genomic structure which contains a large amount of reiterated DNA sequences. This plasmid is a circular structure of 390 kb with approximately 10 families of internally reiterated DNA sequences of two to three elements each. One family includes two directly oriented nitrogenase operons situated 120 kb apart. We also found several stretches of pSym that are reiterated in other replicons of the cell. Localization of symbiotic gene sequences by heterologous hybridization revealed that nodABC sequences are separated in two regions, each of which contains a nod boxlike element, and it also suggested the presence of two copies of the nifA and nodD gene sequences. We propose that the complex structure of the symbiotic plasmid allows interactions between repeated DNA sequences which, in turn, might result in frequent rearrangements.  相似文献   

19.
The gene bank of the symbiotic nitrogen-fixing bacterium Rhizobium lupini (effective strain 359a) was constructed on plasmid pAYC31 that was used to transform Escherichia coli C6000. The bank contains 6600 clones. Restriction analysis showed that the size of the mean insertion fragment in the plasmid in 6.5 kb.  相似文献   

20.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:23,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号