首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facultatively halophytic Lophopyrum elongatum, closely related wheat, Triticum aestivum, and their amphiploid tolerate salt stress better if they are gradually exposed to it than if they are suddenly stressed. Lophopyrum elongatum has greater tolerance of both forms of salt stress than wheat, and its genome partially confers this tolerance on their amphiploid. Chromosomal control of the tolerance of both stress regimes in the L. elongatum and wheat genomes was investigated with disomic and ditelosomic addition lines and disomic substitution lines of L. elongatum chromosomes in wheat and with wheat tetrasomics. The tolerance of the sudden salt stress is principally controlled by L. elongatum chromosomes 3E and 5E and less by 1E, 2E, 6E, and 7E and the tolerance of gradually imposed salt stress principally by chromosomes 3E, 4E, and 5E, and less by chromosome 1E and 7E. Ditelosomic analysis indicated that genes conferring the tolerance of sudden stress are on chromosome arms 1EL, 5ES, 5EL, 6EL, 7ES and 7EL and those controlling the gradual stress regime are on 1ES, 1EL, 5ES, 5EL, 6ES, 7ES, and 7EL. In wheat, chromosomes in homoeologous groups 1, 3, and 7 and chromosomes in homoeologous groups 1, 4, and 6 were shown to enhance the tolerance of suddenly and gradually imposed stress, respectively. The arms of chromosome 3E individually conferred tolerance to neither stress regime. Chromosome 2E and wheat chromosomes 2B and 2D reduce the tolerance of both stress regimes in a hyperploid state. In 2E this effect was associated with arm 2EL. A potential relationship between the tolerance of these stress regimes and the expression of the early-salt induced genes is examined.  相似文献   

2.
Summary The J and E genome species of the Triticeae are invaluable sources of salt tolerance. The evidence concerning the phyletic relatedness of the J genome of diploid Thinopyrum bessarabicum and the E genome of diploid Th. elongatum (=Lophopyrum elongatum) is discussed. Low level of chromosome pairing between J and E at different ploidy levels, suppression of J-E pairing by the Ph1 pairing regulator that inhibits homoeologous pairing, complete sterility of the diploid hybrids (JE), karyotypic divergence of the two genomes, differences in total content and distribution of heterochromatin along their chromosomes, and marked differences in gliadin proteins, isozymes, 5S DNA, and rDNA indicate that J and E are distinct genomes. Well-defined biochemical markers have been identified in the two genomes and may be useful in plant breeding. The level of distinction between J and E is comparable to that among the universally accepted homoeologous genomes A, B, and D of wheat. Therefore, the J and E genomes are homoeologous and not homologous, although some workers continue to call them homologous. The previous workers' data on chromosome pairing in diploid hybrids and/ or karyotypic differences in the conventionally stained chromosomes do not provide sufficient evidence for the proposed merger of J and E genomes (and, hence, of the genera Thinopyrum and Lophopyrum) specifically and for establishing genome relationships generally. Extra precautions should be exercised before changing the designation of an established genome and before merging two genera. A uniform, standardized system of genomic nomenclature for the entire Triticeae is proposed, which should benefit cytogeneticists, plant breeders, taxonomists, and evolutionists.Cooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper no. 3832  相似文献   

3.
Bread wheat is an allohexaploid with genome composition AABBDD. Phytochrome C is a gene involved in photomorphogenesis that has been used extensively for phylogenetic analyses. In wheat, the PhyC genes are single copy in each of the three homoeologous genomes and map to orthologous positions on the long arms of the group 5 chromosomes. Comparative sequence analysis of the three homoeologous copies of the wheat PhyC gene and of some 5 kb of upstream region has demonstrated a high level of conservation of PhyC, but frequent interruption of the upstream regions by the insertion of retroelements and other repeats. One of the repeats in the region under investigation appeared to have inserted before the divergence of the diploid wheat genomes, but was degraded to the extent that similarity between the A and D copies could only be observed at the amino acid level. Evidence was found for the differential presence of a foldback element and a miniature inverted-repeat transposable element (MITE) 5′ to PhyC in different wheat cultivars. The latter may represent the first example of an active MITE family in the wheat genome. Several conserved non-coding sequences were also identified that may represent functional regulatory elements. The level of sequence divergence (Ks) between the three wheat PhyC homoeologs suggests that the divergence of the diploid wheat ancestors occurred some 6.9 Mya, which is considerably earlier than the previously estimated 2.5–4.5 Mya. Ka/Ks ratios were <0.15 indicating that all three homoeologs are under purifying selection and presumably represent functional PhyC genes. RT-PCR confirmed expression of the A, B and D copies. The discrepancy in evolutionary age of the wheat genomes estimated using sequences from different parts of the genome may reflect a mosaic origin of some of the Triticeae genomes.  相似文献   

4.
Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 *1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 *1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 *1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid genomes. However, the RbcS genes, located on 2BS, were more conserved (double dosage), indicating that the above mechanism(s) does not operate equally on individual genes.  相似文献   

5.
The use of DNA sequence-based comparative genomics for evolutionary studies and for transferring information from model species to related large-genome species has revolutionized molecular genetics and breeding strategies for improving those crops. Comparative sequence analysis methods can be used to cross-reference genes between species maps, enhance the resolution of comparative maps, study patterns of gene evolution, identify conserved regions of the genomes, and facilitate interspecies gene cloning. In this study, 5,780 Triticeae ESTs that have been physically mapped using wheat (Triticum aestivum L.) deletion lines and segregating populations were compared using NCBI BLASTN to the first draft of the public rice (Oryza sativa L.) genome sequence data from 3,280 ordered BAC/PAC clones. A rice genome view of the homoeologous wheat genome locations based on sequence analysis shows general similarity to the previously published comparative maps based on Southern analysis of RFLP. For most rice chromosomes there is a preponderance of wheat genes from one or two wheat chromosomes. The physical locations of non-conserved regions were not consistent across rice chromosomes. Some wheat ESTs with multiple wheat genome locations are associated with the non-conserved regions of similarity between rice and wheat. The inverse view, showing the relationship between the wheat deletion map and rice genomic sequence, revealed the breakdown of gene content and order at the resolution conferred by the physical chromosome deletions in the wheat genome. An average of 35% of the putative single copy genes that were mapped to the most conserved bins matched rice chromosomes other than the one that was most similar. This suggests that there has been an abundance of rearrangements, insertions, deletions, and duplications eroding the wheat-rice genome relationship that may complicate the use of rice as a model for cross-species transfer of information in non-conserved regions.  相似文献   

6.
Summary Three different 3 noncoding sequences of wheat rubisco small subunit (SSU) genes (RbcS) were used as probes to identify the gene members of different RbcS subfamilies in the common wheat cultivar Chinese Spring (CS). All genes of the wheat RbcS multigene family were previously assigned to the long arm of homoeologous group 5 and to the short arm of homoeologous group 2 chromosomes of cv CS. Extracted DNA from various aneuploids of these homoeologous groups was digested with four restriction enzymes and hybridized with three different 3 noncoding sequences of wheat SSU clones. All RbcS genes located on the long arm of homoeologous group 5 chromosomes were found to comprise a single subfamily, while those located on the short arm of group 2 comprised three subfamilies. Each of the ancestral diploid genomes A, B, and D has at least one representative gene in each subfamily, suggesting that the divergence into subfamilies preceded the differentiation into species. This divergence of the RbcS genes, which is presumably accompanied by a similar divergence in the 5 region, may lead to differential expression of various subfamilies in different tissues and in different developmental stages, in response to different environmental conditions. Moreover, members of one subfamily that belong to different genomes may have diverged also in the coding sequence and, consequently, code for distinguishable SSU. It is assumed that such utilization of the RbcS multigene family increases the adaptability and phenotypic plasticity of common wheat over its diploid progenitors.  相似文献   

7.
Thinopyrum elongatum serves as an excellent gene pool for wheat improvement. Genes for resistance to many biotic and abiotic stresses have been transferred from Th. elongatum to wheat through chromosome manipulation. For breeding programs, molecular markers enable screening of a large number of genotypes for alien chromosome introgressions. The main objective of the present study was to develop and characterize EST (expressed sequence tags) and PLUG (PCR-based Landmark Unique Gene) markers that can distinguish Th. elongatum chromatin from the wheat genomes. A total of 258 mapped EST primer pairs and 46 PLUG primer pairs were tested on DNA from wheat Chinese Spring (CS) and CS-Th. elongatum addition lines. The results showed that 43 primer pairs could be effectively mapped to specific Th. elongatum chromosomes. Twenty-two of the 43 markers displayed similar homoeologous chromosome locations to hexaploid wheat. Nine markers mapped to different linkage groups between wheat and Th. elongatum, while 12 makers mapped on two or three different Th. elongatum chromosomes. A comparison of molecular marker locations indicated that Th. elongatum genome was closely related to the D genome of wheat, and chromosome rearrangements and duplication had occurred in Th. elongatum and the wheat genomes. The markers will be useful in comparative gene mapping, chromosome evolutionary analysis, and gene introgression for wheat improvement using Th. elongatum accessions as gene donors.  相似文献   

8.
Summary Two high-molecular-weight subunit (HMWS) glutenin genes from the A and B genomes of the hexaploid bread wheat Triticum aestivum L. cv Cheyenne have been isolated and sequenced. Both of these genes are of the high Mr class (x-type) of HMW glutenins, and have not been previously reported. The entire set of six HMW genes from cultivar Cheyenne have now been isolated and characterized. An analysis of the Ax and Bx sequences shows that the Ax sequence is similar to the homoeologous gene from the D genome, while the Bx repeat structure is significantly different. The repetitive region of these proteins can be modelled as a series of interspersed copies of repeat modifs of 6, 9, and 15 amino acid residues. The evolution of these genes includes single-base substitutions over the entire coding region, plus insertion/deletions of single or blocks of repeats in the central repetitive domain.  相似文献   

9.
Gulick PJ  Dvorák J 《Plant physiology》1992,100(3):1384-1388
Lophopyrum elongatum is a highly salt-tolerant relative of wheat. A previous study showed that the abundance of a number of mRNA species is enhanced or reduced in the roots of the L. elongatum × Triticum aestivum amphiploid by salt stress. Eleven genes with enhanced expression in the roots of salt-stressed L. elongatum plants have been cloned as cDNAs. The clones were used as probes to characterize temporal expression of these genes in roots after initiation of salt (250 mm NaCl) stress. All 11 genes are induced within 2 h after exposure to 250 mm NaCl and reached peak expression after 6 h. The decline of gene expression distinguished two groups, one in which mRNA concentrations returned to basal levels by 24 h and the other in which this occurred between 3 and 7 d. One of the 11 clones was found to be homologous to a multigene family of abscisic acid-induced genes, rab and dhn, identified in other species. We suggest that the coordinate expression of this large number of genes reflects the existence of a highly specific early response to salt stress. We refer to this response as the “early salt stress response.”  相似文献   

10.
11.
Targeted homoeologous recombination mediated by the absence of the Ph1 locus is currently the most efficient technique by which foreign genes can be introgressed into polyploid wheat species. Because intra-arm homoeologous double cross-overs are rare, introgressed foreign genes are usually on terminal foreign chromosome segments. Since the minimum length of such a segment is determined by the position of a gene in the chromosome, large chromosome segments with undesirable genetic effects are often introgressed. Introgression of foreign genes on short interstitial segments based on two cycles of homoeologous recombination is described here. The utility of the technique is demonstrated by the introgression of the Kna1 locus, which controls K+/Na+ selectivity in T. aesivum L., on short interstitial segments of chromosome 4D into chromosome 4B of Triticum turgidum L. The level of recombination in a homoeologous segment is not significantly affected by a juxtaposed proximal homologous segment in the absence of the Ph1 locus.  相似文献   

12.
Amplification and dispersion of repeated DNA sequences in theTriticeae   总被引:1,自引:0,他引:1  
Four representatives of a family of dispersed repetitive sequences which were prominent and dispersed in the E genome ofThinopyrum elongatum but poorly represented in wheat, were studied in detail. The 1.4kb sequences were present both as part of tandem and more complex arrays and appeared to have resulted from repeated amplification of the sequence and their dispersion throughout the genome. Subcloning of sections of the 1.4 kb sequences resulted in probes which improved the resolution of the E genome from the genomes in wheat and enabled identification of single E genome chromosomes introduced into wheat. The generality of these types of sequences in the tribeTriticeae was confirmed by isolating analogous sequences from the R (rye,Secale cereale), V (Dasypyrum villosum), and N (Psathyrostachys juncea) genomes. — The cloned repetitive sequences from the R, V, and N genomes each showed characteristic fluctuations in amount within the grasses examined in addition to being virtually absent from wheat. It is thus possible that these sequences may provide useful taxonomic indicators for establishing relationships within theTriticeae, as well as valuable probes for tracing alien chromatin introduced into wheat.  相似文献   

13.
Agropyron Gaertn. (P genome) is a wild relative of wheat that harbours many genetic variations that could be used to increase the genetic diversity of wheat. To agronomically transfer important genes from the P genome to a wheat chromosome by induced homoeologous pairing and recombination, it is necessary to determine the chromosomal relationships between Agropyron and wheat. Here, we report using the wheat 660K single nucleotide polymorphism (SNP) array to genotype a segregating Agropyron F1 population derived from an interspecific cross between two cross‐pollinated diploid collections ‘Z1842’ [A. cristatum (L.) Beauv.] (male parent) and ‘Z2098’ [A. mongolicum Keng] (female parent) and 35 wheat–A. cristatum addition/substitution lines. Genetic linkage maps were constructed using 913 SNP markers distributed among seven linkage groups spanning 839.7 cM. The average distance between adjacent markers was 1.8 cM. The maps identified the homoeologous relationship between the P genome and wheat and revealed that the P and wheat genomes are collinear and relatively conserved. In addition, obvious rearrangements and introgression spread were observed throughout the P genome compared with the wheat genome. Combined with genotyping data, the complete set of wheat–A. cristatum addition/substitution lines was characterized according to their homoeologous relationships. In this study, the homoeologous relationship between the P genome and wheat was identified using genetic linkage maps, and the detection mean for wheat–A. cristatum introgressions might significantly accelerate the introgression of genetic variation from Agropyron into wheat for exploitation in wheat improvement programmes.  相似文献   

14.
Intergeneric hybridizations were made betweenT. elongatum, and twoPsathyrostachys and fiveLeymus species. The seed set obtained onT. elongatum ×Leymus hybrids ranged from 5.65% to 20.00%, depending onLeymus species. The seed set obtained onT. elongatum ×Psathyrostachys hybrids ranged from 16.07% to 19.70%. Meiotic pairing at metaphase-I in JN diploid hybrids ofT. elongatum ×Psathyrostachys species revealed a very low level homology between the basic J and N genomes, and further demonstrated that the two genomes are quite diverged. Chromosome pairing in theT. elongatum ×Leymus secalinus hybrid averaged 15.19 univalents + 2.62 rod bivalents + 0.26 ring bivalents + 0.02 trivalents, suggesting that the partial Je chromosomes ofT. elongatum has homology withLeymus secalinus genomes.L. secalinus might have 3–4 chromosomes originating from Je genome.  相似文献   

15.
Zhou C  Xia G  Zhi D  Chen Y 《Planta》2006,223(4):714-724
In this paper, we describe how Bupleurum scorzonerifolium/Triticum aestivum asymmetric somatic hybrids can be exploited to study the wheat genome. Protoplasts of B. scorzonerifolium Willd were irradiated with ultraviolet light (UV) and fused with protoplasts of common wheat (T. aestivum L.). All cell clones were similar in appearance to those of B. scorzonerifolium, while the regenerated plantlets were either intermediate or B. scorzonerifolium-like. Genotypic screening using isozymes showed that 39.3% of cell clones formed were hybrid. Some of the hybrid cell clones grew vigorously, and differentiated green leaves, shoots or plantlets. DNA marker analysis of the hybrids demonstrated that wheat DNA was integrated into the nuclear genomes of B. scorzonerifolium and in situ karyotyping cells revealed that a few wheat chromosome fragments had been introgressed into B. scorzonerifolium. The average wheat SSR retention frequency of the RH panel was 20.50%, but was only 6.67% in fusions with a non-irradiated donor. B. scorzonerifolium chromosomes and wheat SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2.5–3.5 years. We suggest the UV-induced asymmetric somatic hybrids between B. scorzonerifolium Willd and T. aestivum L. have the potential for use in the construction of an RH map of the wheat genome.  相似文献   

16.
The lengths of the A, B, and D genomes of common wheat,Triticum aestivum, were measured from the karyotype. Relative to the B genome, standardized as length 1.000, the lengths of the A and D genomes were 0.835 and 0.722, respectively. The lengths of the chromosome arms in the A and D genomes were then multiplied by the appropriate constants so that the total lengths of each genome also equalled 1.000. These calculations revealed that homoeologous chromosomes in wheat, with a few exceptions, have similar sizes and arm ratios. The arm lengths of the three homoeologues in each homoeologous group were then averaged. These average chromosomes turned out to be remarkably similar, in size and arm ratio, to their homoeologues in the E genome ofElytrigia elongata. This evidence and data on cross-compatibility and morphological characteristics suggested that the genusTriticum is a result of adaptive radiation from the perennial genusElytrigia, specifically from the complex of species possessing the E genome or one closely related to it.  相似文献   

17.
Durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, genomes AB) is an economically important cereal used as the raw material to make pasta and semolina. In this paper we present the construction and characterization of a bacterial artificial chromosome (BAC) library of tetraploid durum wheat cv. Langdon. This variety was selected because of the availability of substitution lines that facilitate the assignment of BACs to the A and B genome. The selected Langdon line has a 30-cM segment of chromosome 6BS from T. turgidum ssp. dicoccoides carrying a gene for high grain protein content, the target of a positional cloning effort in our laboratory. A total of 516,096 clones were organized in 1,344 384-well plates and blotted on 28 high-density filters. Ninety-eight percent of these clones had wheat DNA inserts (0.3% chloroplast DNA, 1.4% empty clones and 0.3% empty wells). The average insert size of 500 randomly selected BAC clones was 131 kb, resulting in a coverage of 5.1-fold genome equivalents for each of the two genomes, and a 99.4% probability of recovering any gene from each of the two genomes of durum wheat. Six known copy-number probes were used to validate this theoretical coverage and gave an estimated coverage of 5.8-fold genome equivalents. Screening of the library with 11 probes related to grain storage proteins and starch biosynthesis showed that the library contains several clones for each of these genes, confirming the value of the library in characterizing the organization of these important gene families. In addition, characterization of fingerprints from colinear BACs from the A and B genomes showed a large differentiation between the A and B genomes. This library will be a useful tool for evolutionary studies in one of the best characterized polyploid systems and a source of valuable genes for wheat. Clones and high-density filters can be requested at Communicated by P. LangridgeThe first two authors contributed equally to the investigation  相似文献   

18.
Summary In an attempt to transfer genes for salt tolerance and other desirable traits from the diploid wheatgrasses, Thinopyrum bessarabicum (2n=2x=14; JJ genome) and Lophopyrum elongatum (2n=2x=14; EE genome), into durum wheat cv Langdon (2n=4x=28; AABB genomes), trigeneric hybrids with the genomic constitution ABJE were synthesized and cytologically characterized. C-banding analysis of somatic chromosomes of the A, B, J, and E genomes in the same cellular environment revealed distinct banding patterns; each of the 28 chromosomes could be identified. They differed in the total amount of constitutive heterochromatin. Total surface area and C-banded area of each chromosome were calculated. The B genome was the largest in size, followed by the J, A, and E genomes, and its chromosomes were also the most heavily banded. Only 25.8% of the total chromosome complement in 10 ABJE hybrids showed association, with mean arm-pairing frequency (c) values from 0.123 to 0.180 and chiasma frequencies from 3.36 to 5.02 per cell. The overall mean pairing was 0.004 ring IV + 0.046 chain IV + 0.236 III + 0.21 ring II + 2.95 rod II + 20.771. This is total pairing between chromosomes of different genomes, possibly between A and B, A and J, A and E, B and J, B and E, and J and E, in the presence of apparently functional pairing regulator Ph1. Because chromosome pairing in the presence of Ph1 seldom occurs between A and B, or between J and E, it was inferred that pairing between the wheat chromosomes and alien chromosomes occurred. The trigeneric hybrids with two genomes of wheat and one each of Thinopyrum and Lophopyrum should be useful in the production of cytogenetic stocks to facilitate the transfer of alien genes into wheat.  相似文献   

19.
Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.  相似文献   

20.
Wang J  Xiang F  Xia G 《Planta》2005,221(2):277-286
The introgressed small-chromosome segment of Agropyron elongatum (Host.) Neviski (Thinopyrum ponticum Podp.) in F5 line II-1-3 of somatic hybrid between common wheat (Triticum aestivum L.) and A. elongatum was localized by sequential fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and karyotype data. Karyotype analysis offered basic data of arm ratios and relative lengths of 21 pairs of chromosomes in parent wheat Jinan177 and hybrid II-1–3. Using special high repetitive sequences pSc119.2 and pAs1 for FISH, the entire B- and D-genome chromosomes were detected. The FISH pattern of hybrid II-1-3 was the same as that of parent wheat. GISH using whole genomic DNA from A. elongatum as probe determined the alien chromatin. Sequential GISH and FISH, in combination with some of the karyotype data, localized the small chromosome segments of A. elongatum on the specific sites of wheat chromosomes 2AL, 1BL, 5BS, 1DL, 2DL and 6DS. FISH with probe OPF-031296 from randomly amplified polymorphic DNA (RAPD) detected E-genome chromatin of A. elongatum, which existed in all of the small chromosome segments introgressed. Microsatellite primers characteristic for the chromosome arms above were used to check the localization and reveal the genetic identity. These methods are complementary and provide comprehensive information about the genomic constitution of the hybrid. The relationship between hybrid traits and alien chromatin was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号