首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBATA  T. 《Annals of botany》1979,44(3):333-337
The fine structure of barley aleurone cells was studied in theenzyme secretion phase. An ultrastructural feature of this phaseis the formation of stacked rough endoplasmic reticulum (rER),for such a structure was never found in cells during the enzymesynthesis phase. Other structural features frequently observedin the secretion phase were amoeboid-shaped nuclei, the stackedrER wound round the nucleus and mitochondria, and a stream ofthe stacked rER directed to the plasmamembrane. Hordeum vulgare L, barley, aleurone cells, enzyme secretion, gibberellic acid  相似文献   

2.
The addition of gibberellic acid to isolated aleurone layers of barley (Hordeum vulgare L.) causes the production and secretion of four α-amylases. Two of these are stable at pH 3.7 and are not inactivated by ethylenediaminetetraacetate. The other two represent the classical barley α-amylases; i.e., they are inactivated at pH 3.7 and by reagents which from complexes with divalent metal ions. All four forms are synthesized de novo in response to the addition of gibberellic acid.  相似文献   

3.
The role of gibberellic acid (GA3) in controlling the secretion(across the plasma membrane) and release (through the cell wall)of acid phosphatase (E.C. 3.1.3.2 [EC] .) from Avena aleurone layershas been investigated. Evidence from this comparative studywith intact aleurone layers and isolated aleurone protoplastsreveals that the secretion of acid phosphatase is under GA3control. The mechanism underlying secretion and release of theenzyme from aleurone cells is discussed. Key words: Avena fatua, Acid phosphatase, Aleurone protoplasts, Gibberellic acid, Secretion  相似文献   

4.
Gibberellic Acid Induces Vacuolar Acidification in Barley Aleurone   总被引:4,自引:0,他引:4       下载免费PDF全文
Swanson SJ  Jones RL 《The Plant cell》1996,8(12):2211-2221
The roles of gibberellic acid (GA3) and abscisic acid (ABA) in the regulation of vacuolar pH (pHv) in aleurone cells of barley were investigated using the pH-sensitive fluorescent dye 2[prime],7[prime]-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF). BCECF accumulated in vacuoles of aleurone cells, but sequestration of the dye did not affect its sensitivity to pH. BCECF-loaded aleurone cells retained their ability to respond to both GA3 and ABA. The pHv of freshly isolated aleurone cells is 6.6, but after incubation in GA3, the pHv fell to 5.8. The pHv of cells not incubated in hormones or in the presence of ABA showed little or no acidification. The aleurone tonoplast contains both vacuolar ATPase and vacuolar pyrophosphatase, but the levels of pump proteins were not affected by incubation in the presence or absence of hormones. We conclude that GA3 affects the pHv in aleurone cells by altering the activities of tonoplast H+ pumps but not the amounts of pump proteins.  相似文献   

5.
The gibberellic acid (GA3)-induced α-amylases from the aleurone layers of Himalaya barley (Hordeum vulgare L. cv Himalaya) have been purified by cycloheptaamylose-Sepharose affinity chromatography and fractionated by DEAE-cellulose chromatography. Four fractions (α-amylases 1-4) were obtained which fell into two groups (A and B) on the basis of a number of characteristics. Major differences in serological characteristics and in proteolytic fingerprints were found between group A (α-amylases 1 and 2) and group B (α-amylases 3 and 4). Also, the lag time for appearance of group B enzyme activity was longer than for group A, and the appearance of group B required higher GA3 levels than group A. The components of each group behaved similarly, although differences in proteolytic fingerprints were detected.

These results together with those from other studies indicate that GA3 differentially controls the expression of two α-amylase genes or groups of genes giving rise to two groups of α-amylases with many different properties.

  相似文献   

6.
7.
Modulation of Calmodulin mRNA and Protein Levels in Barley Aleurone   总被引:11,自引:0,他引:11       下载免费PDF全文
Changes in calmodulin (CaM) mRNA and protein were investigated in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) incubated in the presence and absence of calcium, gibberellic acid (GA3), and abscisic acid (ABA). CaM mRNA levels increased rapidly and transiently following incubation of aleurone layers in H2O, CaCl2, or GA3. The increase in CaM mRNA was prevented by ABA. This increase in CaM mRNA was brought about by physical stimulation during removal of the starchy endosperm from the aleurone layer. CaM protein levels did not increase in response to physical stimulation. Only incubation in GA3 plus CaCl2 brought about a rapid increase in CaM protein levels in the aleurone cell. ABA reduced the level of CaM protein below that found at the beginning of the incubation period. The rise in CaM protein preceded increases in the synthesis and secretion of [alpha]-amylase. Immunocytochemistry with monoclonal antibodies to carrot and mung bean CaM was used to localize CaM in aleurone protoplasts. Monoclonal antibodies to tubulin and polyclonal antibodies to tonoplast intrinsic protein and malate synthase were used as controls. CaM was localized to the nucleus, the vacuolar membrane, and the cytosol, but was not associated with microtubules.  相似文献   

8.
Gibberellic acid-induced α-amylase synthesis in barley (Hordeum vulgare L.) aleurone layers was inhibited by abscisic acid, and the inhibition was partly removed by additional gibberellic acid alone and by ethylene alone. Together additional gibberellic acid and ethylene almost eliminated abscisic acid inhibition of amylase synthesis. Time course studies of these phenomena showed that the effect of abscisic acid, ethylene, and varying concentrations of gibberellic acid on the course of amylase synthesis were either to speed up or slow down the whole process and not to affect the lag phase or the linear phase separately. The data are discussed in relation to previous studies of abscisic acid-gibberellic acid interaction.  相似文献   

9.
The occurrence and roles of cGMP were investigated in aleurone layers and protoplasts isolated from barley (cv Himalaya) grain. Levels of cGMP in freshly isolated barley aleurone layers ranged from 0.065 to 0.08 pmol/g fresh weight of tissue, and cGMP levels increased transiently after incubation in gibberellic acid (GA). Abscisic acid (ABA) did not increase cGMP levels in aleurone layers. LY 83583 (LY), an inhibitor of guanylyl cyclase, prevented the GA-induced increase in cGMP and inhibited GA-induced [alpha]-amylase synthesis and secretion. The inhibitory effects of LY could be overcome by membrane-permeant analogs of cGMP. LY also prevented GA-induced accumulation of [alpha]-amylase and GAMYB mRNAs. cGMP alone was not sufficient to induce the accumulation of [alpha]-amylase or GAMYB mRNA. LY had a less dramatic effect on the accumulation of mRNAs encoding the ABA-responsive gene Rab21. We conclude that cGMP plays an important role in GA, but not ABA, signaling in the barley aleurone cell.  相似文献   

10.
Jones RL 《Plant physiology》1971,47(3):412-416
A β-1, 3-glucanase of barley (Hordeum vulgare) aleurone cells accumulates when half-seeds are imbibed on water, and accumulation continues when the aleurone layers are incubated in buffer solution. The release of the enzyme is a gibberellic acid-dependent process, however. Although gibberellic acid stimulates glucanase release, it does not markedly affect the total amount of glucanase obtained from these cells when compared with water controls. β-1, 3-Glucanase release from aleurone cells is a function of gibberellic acid concentration and commences after a 4-hour lag period. Processes occurring during this lag period are also dependent upon gibberellic acid concentration. Removal of gibberellic acid from the incubation medium at the end of the lag period, however, does not affect subsequent release of glucanase. The release of glucanase from aleurone cells is an active process with a Q10 greater than 3. Inhibitors of respiration and protein and RNA synthesis effectively inhibit the formation and release of glucanase. It is concluded that gibberellic acid functions primarily to enhance glucanase release rather than its formation.  相似文献   

11.
Ho TH  Abroms J  Varner JE 《Plant physiology》1982,69(5):1128-1131
A large portion of the gibberellic acid (GA3)-induced α-amylase in isolated aleurone layers is transported into the incubation medium. In the presence of GA3 and ethylene, an even larger portion of the enzyme is found in the medium. Employing an acid washing technique developed by Varner and Mense (Plant Physiol 1972 49:187-189), it was observed that ethylene significantly reduces the amount of α-amylase trapped by the thick cell walls of aleurone layers. However, the amount of enzyme remaining in the cell (within the boundary of plasma membrane) is not affected by ethylene. Ethylene has no observable effect on membrane formation as measured by the incorporation of [32P]orthophosphate into phospholipids. Because of these observations it is suggested that ethylene enhances the release of α-amylase, i.e. transport of α-amylase across cell walls, but not the secretion of α-amylase, i.e. transport of α-amylase past the barrier of plasma membrane. The possible mechanism of this ethylene effect is discussed.  相似文献   

12.
On the basis of metal ion requirements and sensitivity to chelators,the lag phase in the induction of amylase synthesis by gibberellicacid can be split into two parts. In the first, addition ofthe hormone rapidly sensitizes the tissue to irreversible inhibitionby o-phenanthroline. This sensitivity persists throughout theincubation. When the tissue is incubated under temperature-stepdownconditions there is also a requirement for externally addediron from shortly after hormone addition. In the second stage, 3 to 4 h after the beginning of the lagperiod, the tissue shows a requirement for externally addedcalcium ions. The inhibition of enzyme activity by calcium deficiencyoccurs earlier and is much greater than would be expected ifits only role is to stabilize -amylase.  相似文献   

13.
Zwar JA  Jacobsen JV 《Plant physiology》1972,49(6):1000-1006
The effects of gibberellic acid on the incorporation of radio-active uridine and adenosine into RNA of barley aleurone layers were investigated using a double labeling method combined with acrylamide gel electrophoresis. After 16 hours of incubation, gibberellic acid stimulated the incorporation of label into all species of RNA, but the effects were very small (0-10%) for ribosomal and transfer RNA and comparatively large (up to 300%) for RNA sedimenting between 5S and 14S. This result was obtained for both isolated aleurone layers and for layers still attached to the endosperm. A similar but less marked pattern occurred in layers incubated for 8 hours, but the effect was not observed after 4 hours. The gibberellic acid-enhanced RNA labeling was not due to micro-organisms. The following evidence was obtained for an association between the gibberellic acid-enhanced RNA synthesis and α-amylase synthesis: (a) synthesis of α-amylase took place in parallel with incorporation of label into gibberellic acid-RNA; (b) actinomycin D inhibited amylase synthesis and gibberellic acid-RNA by similar percentages; (c) 5-fluorouracil halved incorporation of label into ribosomal RNA but had no effect on amylase synthesis and gibberellic acid-RNA; and (d) abscisic acid had little effect on synthesis of RNA in the absence of gibberellic acid, but when it was included with gibberellic acid the synthesis of both enzyme and gibberellic acid-RNA was eliminated. We conclude that large changes in the synthesis of the major RNA species are not necessary for α-amylase synthesis to occur but that α-amylase synthesis does not occur without the production of gibberrellic acid-RNA. Gibberellic acid-RNA is probably less than 1% of the total tissue RNA, is polydisperse on acrylamide gels, and could be messenger species for α-amylase and other hydrolytic enzymes whose synthesis is under gibberellic acid control.  相似文献   

14.
The heat-shock responses of barley (Hordeum vulgare L. cv Hi- malaya) aleurone layers incubated with or without gibberellic acid (GA3) were compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat shock blocked the synthesis and secretion of secretory proteins from GA3-treated layers but not untreated layers. This suppression of secretory protein synthesis has been correlated with changes in endoplasmic reticulum (ER) membranes (F.C. Belanger, M. R. Brodl, T.-h.D. Ho [1986] Proc Natl Acad Sci USA 83: 1354-1358; L. Sticher, A.K. Biswas, D.S. Bush, R.L. Jones [1990] Plant Physiol 92: 506-513). Our secretion data suggested that the ER membranes of aleurone layers incubated without GA3 may be more heat shock tolerant. To investigate this, the lipid profiles of membrane extracts in aleurone layers labeled with [14C]glycerol were examined. Heat shock markedly increased [14C]glycerol incorporation into phosphatidylcholine (PC), and gas chromatography revealed an increase in the amount of saturated fatty acids associated with thin layer chromatography-purified PC in GA3-treated layers. In contrast, aleurone layers incubated without GA3 at normal temperature contained PC-associated fatty acids with a greater degree of saturation than GA3-treated layers. Heat shock modestly increased the degree of fatty acid saturation in untreated aleurone layers. This same trend was noted in fatty acids isolated from ER membranes purified by continuous sucrose density centrifugation. We propose that increased fatty acid saturation may help sustain ER membrane function in heat-shocked aleurone layers incubated in the absence of GA3.  相似文献   

15.
Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.  相似文献   

16.
17.
The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.Plant proteins that are secreted to the apoplast have important functions in signaling, defense, and cell regulation. The classical protein secretory pathway is less characterized in plants than in mammals or yeast but is of growing interest due to the potential of plant systems as hosts for the production of recombinant proteins (Erlendsson et al., 2010; De Wilde et al., 2013). Plant secretomics, therefore, is a rapidly expanding area applied to gain further insight into these processes (Agrawal et al., 2010; Alexandersson et al., 2013). Many secretory proteins contain putative N-glycosylation sites, and the identification and characterization of these sites is an important element in secretomics analysis. However, to date, only a few plant glycoproteomes have been described (Fitchette et al., 2007; Minic et al., 2007; Palmisano et al., 2010; Melo-Braga et al., 2012; Zhang et al., 2012; Thannhauser et al., 2013).The cereal aleurone layer is of major importance due to its central role in grain germination. Previous proteomic studies have been reported for aleurone layers dissected from mature (Finnie and Svensson, 2003) and germinating (Bønsager et al., 2007) barley (Hordeum vulgare) or developing (Tasleem-Tahir et al., 2011) and mature (Laubin et al., 2008; Jerkovic et al., 2010; Meziani et al., 2012) wheat (Triticum aestivum) grains. The in vitro culture of isolated aleurone layers was developed by Chrispeels and Varner (1967). Since then, this system has become an excellent tool for the study of germination signaling in response to phytohormones (Bush et al., 1986; Jones and Jacobsen, 1991; Bethke et al., 1997; Ishibashi et al., 2012). More recently, it has been adopted as a unique system for the analysis of plant secretory proteins (Hägglund et al., 2010; Finnie et al., 2011). The addition of GA3 to the isolated aleurone layers induces the synthesis and secretion of hydrolytic enzymes. In the in vitro system, these accumulate in the incubation buffer, facilitating their identification and characterization using proteomics techniques. Thus, numerous secreted proteins with roles in the hydrolysis of starch, cell wall polysaccharides, and proteins could be identified (Finnie et al., 2011). Furthermore, several of the proteins were also detected in intracellular extracts from the same aleurone layers, presumably prior to their release. Many of the proteins appeared in multiple forms on two-dimensional (2D) gels, and often with higher Mr than expected, suggesting the presence of posttranslational modifications (PTMs; Finnie et al., 2011). Bak-Jensen et al. (2007) and Finnie et al. (2011) observed a highly complex pattern of α-amylase-containing spots on 2D gels, which originated from only two α-AMYLASE2 (AMY2) and two AMY1 gene products from a total of 10 genes, probably reflecting multiple forms due to PTMs.In eukaryotic cells, proteins synthesized in the endoplasmic reticulum (ER) must be correctly folded and assembled before continuing in the secretory pathway. Perturbations of redox state, calcium regulation, Glc deprivation, and viral infection can lead to ER stress, triggered by the accumulation of unfolded and misfolded proteins in the ER lumen. This provokes a triple response from the cell, consisting of an up-regulation of chaperones and vesicle trafficking, a down-regulation of genes encoding secretory proteins, and an up-regulation of proteins involved in endoplasmic reticulum-associated protein degradation (ERAD). In plants, the molecular mechanisms underlying ER stress in plants have yet to be fully resolved (Martínez and Chrispeels, 2003; Nagashima et al., 2011; Moreno et al., 2012).Tunicamycin (TN), an inhibitor of GlcNAc phosphotransferase, which catalyzes the first step in glycoprotein synthesis, has been used to induce ER stress by causing the accumulation of unfolded proteins in the ER lumen (Noh et al., 2003; Kamauchi et al., 2005; Reis et al., 2011). If unfolded proteins are not removed, the prolonged stress will induce programmed cell death. Links between ER stress and apoptosis have been reported in response to TN treatment in mammalian cells, whereas in plants, this correlation has been suggested, but the pathways of signal transduction remain unknown (Kamauchi et al., 2005; Reis et al., 2011).In all plant tissues, heat shock (HS) induces the synthesis of a variety of heat shock proteins (HSPs), which are responsible for protein refolding under stress conditions (Craig et al., 1994) and translocation and degradation in a broad array of normal cellular processes (Bond and Schlesinger, 1986; Spiess et al., 1999). In the barley aleurone layer, HS selectively suppresses the synthesis of secretory proteins, including α-amylase, due to the selective destabilization of secretory protein mRNA (Belanger et al., 1986; Brodl and Ho, 1991). However, an acclimation effect has been described in aleurone cells after prolonged incubation at warm temperatures, resulting in a resumption of the protein secretory machinery (Shaw and Brodl, 2003). The connection between heat stress response and ER stress has been well established in mammals and yeast, but scarce information is available in plants (Denecke et al., 1995).Over the last years, the dual role of reactive oxygen species (ROS) has been established in plants: at higher concentrations, ROS act as toxic molecules damaging cellular macromolecules, eventually causing cell death, but at lower concentrations, ROS seem to be necessary for seed germination and seedling growth by controlling the cellular redox status, regulating growth and protecting against pathogens (Bailly, 2004; Bailly et al., 2008). In the barley aleurone layer, GA3 perceived at the plasma membrane induces ROS generation as a by-product from intense lipid metabolism, and the redox regulation of the GA3-induced response has been proposed (Maya-Ampudia and Bernal-Lugo, 2006). This suggests that during the secretory function of the tissue, moderate levels of ROS may be acting as cellular messengers. In aleurone cells, ROS, especially hydrogen peroxide (H2O2), are involved in the process of programmed cell death, but the molecular mechanisms remain unclear (Bethke and Jones, 2001; Ishibashi et al., 2012).Until now, none of the protein components of the ER stress pathways have been identified in barley; also, little is known about the glycosylation of barley proteins. In this work, numerous N-glycoslation sites are identified, and the effect of perturbing N-glycosylation and the secretory pathway by TN and HS treatments is analyzed in GA3-induced barley aleurone layers.  相似文献   

18.
Jones RL  Bush DS 《Plant physiology》1991,97(1):456-459
The isolation of a 70-kilodalton protein from barley (Hordeum vulgare L.) aleurone layers that cross-reacts with an antibody against yeast binding protein (BiP) is reported. Endoplasmic reticulum isolated from aleurone layers treated with gibberellic acid contain much higher levels of the BiP cognate than do membranes isolated from layers treated with abscisic acid.  相似文献   

19.
The release of acid from the aleurone layer and scutellum of barley (Hordeum vulgare L. cv Himalaya) was investigated. Aleurone layers isolated from mature barley grains acidify the external medium by releasing organic and phosphoric acids. Gibberellic acid and abscisic acid stimulate acid release 2-fold over control tissue incubated in 10 mM CACl2. Gibberellic acid causes medium acidification by stimulating the release of phosphoric and citric acids, whereas abscisic acid stimulates the release of malic acid. The accumulation of these acids in the incubation medium buffers the medium against changes in pH, particularly between pH 4 and 5. The amounts of amino acids that accumulate in the medium are low (2-12 nmol/layer) compared to other organic and phosphoric acids (100-500 nmol/layer). The scutellum does not play a major role in medium acidification but participates in the uptake of organic acids. The organic acid composition of the starchy endosperm changes after 3 d of imbibition; malic, succinic, and lactic acids decrease, whereas citric and phosphoric acids remain unchanged or increase. These results indicate that during postgerminative growth, the acidity of the starchy endosperm is maintained by acid production by the aleurone layer.  相似文献   

20.
Polar cell growth is regulated by auxin (Klämbt et al., 1992). It is essentially dependent upon exocytosis. Is exocytosis directly regulated by auxin? Aleurone cells secrete amylases, as well as other hydrolases, by exocytosis. In preliminary experiments, with 22 h of incubation, increasing concentration of N-1-naphthylphthalamic acid (NPA) parallels the inhibition of amylase secretion. A model system for secretion was designed. Barley aleurone layers, previously incubated in 1 μM GA3 for 16 h, then washed extensively in the presence of 10 μM NPA for 10 min, were incubated finally for 2 h in GA3, NPA and/or auxins. NPA inhibits amylase secretion. Auxins completely abolished secretion inhibition at the optimal concentration of 1 μM. Aleurone layers contain 1.5 to 3 μM endogenous indole-3-acetic acid (IAA) and have a high capacity to accumulate and retain IAA. A 7-fold accumulation occurred within 3 h after application of 20 μM radiolabeled IAA. A loss of about 10% could be measured within the following 4 h period in fresh media, independent of the presence of NPA. The inhibition of amylase secretion by NPA is not due to an inhibition of protein biosynthesis which was tested by the use of [35S]-methionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号