首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution and ontogeny of polypeptide YY (PYY)-and pancreatic polypeptide (PP)-immunoreactive cells in the gastrointestinal tract of rat were investigated. PYY-immunoreactive cells were numerous in the pylorus, ileum and colon and only a few cells were observed in the corpus, duodenum, jejunum and rectum. On the other hand, a few PP-immunoreactive cells were seen in the colon only. Both PYY-and PP-immunoreactive cells were of the open type, i.e., they extended from the basal lamina to the gut lumen. PYY-immunoreactive cells were observed first in the lower half of the stomach and in the intestine of 19 day-old embryo. The localization of the cells seemed to move along towards the pylorus and the lower part of the intestine. PP-immunoreactive cells could only be detected for the first time in the colon of 2 day-old rat. These cells appeared temporarily in the pylorus and rectum during the period 7 to 21 days after birth. It was concluded that the difference between PYY-and PP-immunoreactive cells in the distribution, frequency and ontogeny provide further evidence that PYY and PP occur in two independent cell types.  相似文献   

2.
Various parts of the human gastrointestinal tract were investigated immunocytochemically for the occurrence of polypeptide YY (PYY) and pancreatic polypeptide (PP). PYY-immunoreactive cells were observed in the lower part of the ileum, in the colon and in the rectum, and PP-immunoreactive cells were found in the colon and rectum. Both cell types were of the open type, i.e. they extended from the basal lamina to the gut lumen. PYY-immunoreactive cells were seen to emit cytoplasmic processes to the neighbouring goblet cells. This latter observation suggests that PYY cells may exert a paracrine action on the mucus-secreting goblet cells. Staining of consecutive thin plastic sections and staining of the same section simultaneously for two peptides showed that PYY-immunoreactivity did not occur in PP- or enteroglucagon-immunoreactive cells. On the ultrastructural level PYY-immunoreactivity was localized in basal granulated endocrine cells. These cells contained round or slightly oval electron dense granules with a mean diameter of 150 nm (range 100-300 nm).  相似文献   

3.
北京鸭消化道内分泌细胞的免疫组织化学研究   总被引:32,自引:3,他引:32  
应用七种消化道激素抗血清,对北京鸭消化道内分泌细胞进行了免疫组织化学定位,促胃素释放肽细胞大量分布于腺胃和肌胃。生长抑素细胞在腺胃和肌胃数量很多,在幽门部密集,且偶见于十地二指肠,胃素细胞在幽门部非常密集,并较多分布于整个小肠,肌胃内亦有少量。5-羟色胺细胞大量见于肠管各段,并偶见于幽门,少量胰多肽细胞见于腺胃、十二指肠和空肠,未检出胃动素和抑胃肽细胞。  相似文献   

4.
Summary Four immunoreactive endocrine cell types can be distinguished in the pancreatic islets of B. conchonius: insulin-producing B cells, somatostatin-producing A1 (= D) cells, glucagon-producing A2 cells and pancreatic poly-peptide-producing PP cells. The principal islet of this species contains only a few PP cells, while many PP cells are present in the smaller islets. Except for the B cell all pancreatic endocrine cell types are also present in the pancreatic duct.At least six enteroendocrine cell types are present in the gut of B. conchonius: 1. a cell type (I) with small secretory granules, present throughout the intestine, and possibly involved in the regulation of gut motility; 2. a C-terminal gastrin immunoreactive cell, probably producing a caerulein-like peptide; these cells are located at the upper parts of the folds, especially in the proximal part of the intestinal bulb; 3. a met-enkephalin-immunoreactive cell, present throughout the first segment; 4. a glucagon-immunoreactive cell, which is rare in the first segment; 5. a PP-immunoreactive cell, mainly present in the first half of the first segment; 6. an immunoreactive cell, which cannot at present be specified, located in the intestinal bulb. The latter four cell types are mostly located in the basal parts of the folds, although some PP-immunoreactive cells can also be found in the upper parts.Most if not all enteroendocrine cells are of the open type. The possible functions of all enteroendocrine cell types are discussed.Abbreviations BPP bovine pancreatic polypeptide - CCK cholecystokinin - GEP gastro-entero-pancreatic - GIP gastric inhibitory peptide or glucose-dependent insulin releasing peptide - PPP pig pancreatic polypeptide - VIP vasoactive intestinal polypeptide  相似文献   

5.
Summary Pancreatic spasmolytic polypeptide (PSP) is a peptide that is isolated from the porcine pancreas and that affects intestinal motility and growth of intestinal tumour cells in vitro. The peptide was recently demonstrated to be present in large amounts in pancreatic juice. The cellular origin of the peptide, however, is largely unclarified and the localization was therefore studied of PSP in pigs using immunohistochemistry. Positive immunoreactions were seen in the pancreas, the stomach, the duodenum, the jejunum and the ileum. In the pancreas, the PSP immunoreaction was seen in all acinar cells; no immunoreaction was seen in the endocrine islets. In the stomach, it was localized to the mucous cells of the glands in the cardiac gland region, the corpus and the pylorus. In the duodenum a strong immunoreaction was present in Brunner's glands and in the cells of their excretory ducts. In the jejunum and ileum, PSP immunoreactivity was seen in some of the cells in the epithelium of the crypts of Lieberkühn. A peptide chromatographically identical to highly purified PSP was identified in pancreas and stomach extracts. Thus epithelial cells in all parts of the stomach and small intestine contribute to the supply of PSP to the gut lumen.  相似文献   

6.
Pancreatic spasmolytic polypeptide (PSP) is a peptide that is isolated from the porcine pancreas and that affects intestinal motility and growth of intestinal tumour cells in vitro. The peptide was recently demonstrated to be present in large amounts in pancreatic juice. The cellular origin of the peptide, however, is largely unclarified and the localization was therefore studied of PSP in pigs using immunohistochemistry. Positive immunoreactions were seen in the pancreas, the stomach, the duodenum, the jejunum and the ileum. In the pancreas, the PSP immunoreaction was seen in all acinar cells; no immunoreaction was seen in the endocrine islets. In the stomach, it was localized to the mucous cells of the glands in the cardiac gland region, the corpus and the pylorus. In the duodenum a strong immunoreaction was present in Brunner's glands and in the cells of their excretory ducts. In the jejunum and ileum, PSP immunoreactivity was seen in some of the cells in the epithelium of the crypts of Lieberkühn. A peptide chromatographically identical to highly purified PSP was identified in pancreas and stomach extracts. Thus epithelial cells in all parts of the stomach and small intestine contribute to the supply of PSP to the gut lumen.  相似文献   

7.
Indirect immunofluorescence technique using an antibody against bovine pancreatic polypeptide has allowed us to detect immunoreactive cells in the small intestine of the monkey Macaca irus. These cells are located almost exclusively in the wall of Lieberkuhn's glands, especially in the jejunum and, in a smaller number, in the duodenum; these cells are scattered, always isolated, never in clusters; immunoreactive cells were never seen in the colon. There were no sex-linked differences in the morphology as well as in the distribution of these immunoreactive cells.  相似文献   

8.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

9.
为探讨季节性环境对长爪沙鼠肠道5-羟色胺(5-hydroxytryptamine,5-HT)细胞密度动态的影响,于2003
年11 月(冬季)和2004 年7 月(夏季),采用卵白素-生物素-过氧化物酶复合物(avidin-biotin-peroxidase complex,
ABC)免疫组织化学法,对其肠道5-HT 细胞进行了定位研究。结果显示:5-HT 细胞主要分布于肠上皮基
底部和肠腺上皮中,多呈圆形或椭圆形,少数呈长棒状、锥体形或不规则形,其形态学特征无季节性差异。冬
季在小肠密度最高,十二指肠、盲肠和直肠其次,结肠最低;夏季在小肠和十二指肠密度最高,其它各段密度
相似,这可能与其食物质量的季节性变化有关。除十二指肠和结肠外,冬季肠道各段的密度都高于夏季,这有
利于提高处理和消化食物的能力,是对冬季食物质量和摄食量增加的适应。5-HT 细胞的形态学特征和季节动态
说明,长爪沙鼠肠道在细胞水平上可对环境条件的变化产生反应,具有适应性调节的能力。  相似文献   

10.
The family of serine proteases known as the proprotein convertases subtilisin/kexin type (PCSK) is responsible for the cleavage and maturation of many precursor hormones. Over its three successive regions, the duodenum, the jejunum and the ileum, the small intestine (SI) expresses over 40 peptide hormones necessary for normal intestinal physiology. Most of these hormones derive from proteolytic cleavage of their cognate inactive polypeptide precursors. Members of the PCSK family of proteases have been implicated in this process, although details of enzyme-substrate interactions are largely lacking. As a first step towards elucidating these interactions, we have analyzed by immunohistochemistry the regional distribution of PCSK1, PCSK2 and PCSK3 in mouse SI as well as their cellular co-localization with substance P (SP), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide (GIP) and somatostatin (SS), 4 peptide hormones known to result from PCSK-mediated processing. Results indicate that PCSK1 is found in all three regions of the SI while PCSK2 and PCSK3 are primarily expressed in the upper two, the duodenum and the jejunum. In these proximal regions, PCSK1 was detectable in 100% of SP-positive (+) cells, 85% of CCK+ cells and 50% of GIP+ cells; PCSK2 was detectable in 40% of SS+ cells and 35% of SP+ cells; PCSK3 was detectable in 75% of GIP+ cells and 60% of SP+ cells. These histological data suggest that the 3 PCSKs may play differential and overlapping roles in prohormone processing in the three regions of the SI.  相似文献   

11.
Antisera were raised against the icosapeptide fragment of the pancreatic polypeptide (PP) isolated from the canine pancreas. They were used for the immunocytochemical study of the cellular localisation and distribution of the icosapeptide in the gut and pancreas of various mammals. The results indicate that PP and the icosapeptide coexist in the majority of the PP-immunoreactive cells in the pancreas of cat, dog, pig, monkey and man and in all the PP-immunoreactive cells in the stomach of the cat and dog. The icosapeptide does not seem to occur in cells or nerves containing PP-related peptides, such as peptide YY or neuropeptide Y. PP-immunoreactive cells devoid of the icosapeptide could be demonstrated in the large intestine. These cells are probably distinct from the pancreatic PP cell type, and the PP-immunoreactive material probably represents the homologous peptide YY rather than PP. The present findings support the view that the icosapeptide is part of the PP precursor and hence, only the cells containing immunoreactive icosapeptide in addition to immunoreactive PP are to be considered ‘true’ PP cells. The icosapeptide antisera did not stain PP cells in mouse, rat and guinea-pig, suggesting marked species variation in the amino acid sequence of the icosapeptide portion of the PP precursor.  相似文献   

12.
AIM: To investigate the effects of members of the pancreatic polypeptide family on migrating myoelectric complexes in rats in vivo. METHODS: Rats were supplied with bipolar electrodes at 5 (duodenum), 15 and 25 cm (jejunum) distal to pylorus for electromyography. The natural ligands neuropeptide Y, pancreatic polypeptide, peptide YY1-36 and peptide YY3-36 were infused IV at doses of 0.5-400 pmol kg(-1) min(-1). The mechanisms of action were studied after pre-treatment with N(omega)-nitro-L-arginine (L-NNA) 1 mg kg(-1), guanethidine 3 mg kg(-1) and in bilaterally vagotomized animals. RESULTS: PP inhibited myoelectrical activity dose-dependently in both the duodenum (ED50 5.8 pmol kg(-1) min(-1)) and jejunum (2.6 pmol kg(-1) min(-1)). PYY1-36 and PYY3-36 also had inhibitory effect in the jejunum (4.4 and 130 pmol kg(-1) min(-1), respectively). PYY1-36 had no significant effect in the duodenum, whereas PYY3-36 stimulated myoelectrical activity at the highest doses. NPY was without effect. In the jejunum neither L-NNA, guanethidine or vagotomy had any significant influence on the inhibitory effects of PP, PYY1-36 and PYY3-36. In the duodenum, the effect of PP was inhibited by guanethidine, but not L-NNA or vagotomy. The stimulatory effect of PYY3-36 in the duodenum was blocked by L-NNA and vagotomy, whereas guanethidine was without effect. CONCLUSION: Peptides of the PP family modulate small bowel motility differentially. Whereas their general effect is inhibitory in the jejunum, the mixing duodenal compartment is stimulated by PYY3-36, suggested to reflect receptor distribution distinction in the gut. This implicates distribution of distinct receptors in the gut being activated by either peptide.  相似文献   

13.
14.
The distribution and the frequency of occurrence of nine types of gut endocrine cells were revealed using immunohistochemical methods in eight portions from the gastrointestinal tract of the chicken (Gallus gallus var domestica). In the proventriculus, somatostatin- and gastrin-releasing polypeptide (GRP)-immunoreactive cells were commonly found. Serotonin-, pancreatic glucagon-, and enteroglucagon-immunoreactive cells were uncommon. Avian pancreatic polypeptide (APP)-immunoreactive cells were rare. In the gizzard, numerous GRP-, and a small number of somatostatin-immunoreactive cells were observed. The pyloric region was characterized by the presence of abundant gastrin-, somatostatin-, and neurotensin-immunoreactive cells. Numerous serotonin-immunoreactive cells were detected in all portions of the intestine. Moderate numbers of neurotensin-immunoreactive cells were detected in all portions of the intestine except for the cecum. A few gastrin- and somatostatin-immunoreactive cells were detected in the duodenum and jejunum. A small number of pancreatic glucagon-immunoreactive cells were detected in the jejunum and ileum. Enteroglucagon-immunoreactive cells were detected in the small intestine in increasing numbers forwards the ileum. Motilin-immunoreactive cells were rare in the small intestine.  相似文献   

15.
扬子鳄消化道内分泌细胞的免疫组织化学研究   总被引:59,自引:3,他引:56  
应用7种特异性胃肠激素抗血清对扬子鳄消化道内分泌细胞进行了免疫组织化学定位。5-羟色胺细胞在消化道各段都有分布,以十二指肠密度最高,食道、直肠其次。生长抑素细胞在胃幽门部非常密集,胃体中等,胃贲门部较少,十二指肠偶见。胃泌素细胞主要分布于十二指肠前段,空肠、回肠和直肠偶见。许多血管活性肠肽细胞分布于胃贲门部,胃体和胃幽门部少数。胰高血糖素、胰多肽和P-物质在消化道各段均未检出阳性细胞。结合扬子鳄的  相似文献   

16.
The aim of the present study was to clarify the distribution and relative frequencies of somatostatin (SST)-producing cells in the stomach and the small intestine of the ostrich by using immunohistochemistry. The results indicated that somatostatin-immunoreactive (SST-IR) cells were distributed in mucosal layers of the proventriculus, duodenum, jejunum and ileum. However, no immunoreactivity was observed in the gizzard. SST-IR cells were found at the lower part of glandular lobule in the proventriculus, which were oval and round generally. SST-IR cells were present in the mucous membrane of entire small intestine of the ostrich. SST-IR cells had round and spherical shapes (closed-type cells), or spindle and pyriform shapes (open-type cells) in the small intestine. SST-positive cells were localized preferentially in the proventriculus of the 60-day-old ostrich. These results indicated that SST might be involved in functional and developmental regulation of gastrointestinal tract of the ostrich.  相似文献   

17.
Iron (Fe) absorption by three segments (duodenum, jejunum, and ileum) of the small intestine of chickens was studied by a perfusion technique in vivo in closed circuit using59Fe Cl3 and was related to the histological characteristics of each segment. The serosal transfers of Fe for the duodenum and jejunum were the same (14%/cm), but significantly different (p<0.05) from those of the ileum (9%/cm), which may be explained by the morphological and histological properties of the gut of chickens. However, the presence of Fe in blood and in liver was significantly lower after perfusion of the jejunum and ileum than after perfusion of the duodenum. It is concluded that chickens show an early adaptation of small intestine to Fe absorption in response to the considerable loss of Fe suffered during the laying process.  相似文献   

18.
Individual and topographical variation in the metabolic profiles of multiple human gastrointestinal tract (GIT) biopsies have been characterized using high-resolution magic-angle spinning (HRMAS) 1H NMR spectroscopy and pattern recognition. Samples from antrum, duodenum, jejunum, ileum, and transverse colon were obtained from 8 male and 8 female participants. Each gut region generated a highly characteristic metabolic profile consistent with the varying structural and functional properties of the tissue at different longitudinal levels of the gut. The antral (stomach) mucosa contained higher levels of choline, glycogen, phosphorylethanolamine, and taurine than other gut regions. The spatially close regions of the duodenum and jejunum were equivalent in terms of their gross biochemical composition with high levels of choline, glutathione, glycerophosphocholine (GPC), and lipids relative to other gut regions. The ileal mucosa showed poor discrimination from the duodenum and jejunum tissues and generated strong amino acids signatures but had relative low GPC signals. The colon (large intestine) was high in acetate, glutamate, inositols, and lactate and low in creatine, GPC, and taurine compared to the small intestine. These longitudinal metabolic variations in the human GIT could be attributed to functional variations in energy metabolism, osmoregulation, gut microbial activity, and oxidative protection. This work indicates that 1H HRMAS NMR studies may be of value in analyzing local metabolic variation due to pathological processes in gut biopsies.  相似文献   

19.
The present study was conducted to clarify the regional distribution and relative frequency of endocrine cells secreting serotonin, substance P (SP), cholecystokinin-8 (CCK-8), vasoactive intestinal polypeptide (VIP) and neurotensin in the small and large intestine of the mole-rats (Spalax leucodon), by specific immunohistochemical methods. In the small and large intestine of mole-rats (Spalax leucodon), serotonin, SP and VIP were identified with various frequencies, but CCK-8 and neurotensin were not observed. Most of the IR cells in the small and large intestine were located in the intestinal crypt and epithelium however, they were more frequency in the intestinal crypt. Serotonin-IR cells were detected throughout the whole intestinal tract, predominantly in the duodenum and colon. SP-IR cells were demonstrated throughout the whole intestinal tract except for the ileum and rectum with highest frequencies in the cecum. VIP-IR cells were found in all parts of the small intestine except for the large intestine.In conclusion, the general distribution patterns and relative frequency of intestinal endocrine cells of the mole-rats (Spalax leucodon) was similar to those of some rodent species. However, some species-dependent unique distributions and frequencies characteristics of endocrine cells were also observed in the present study.  相似文献   

20.
白条草蜥消化道内分泌细胞的免疫组织化学   总被引:9,自引:0,他引:9  
应用6种胃肠激素抗血清和免疫组织化学ABC法(avidin-biotin complex method),对白条草蜥(Takydromus wolteri)消化道内分泌细胞进行了免疫组织化学定位研究和形态学观察。结果表明,5-羟色胺细胞较其他5种内分泌细胞的分布更为广泛,整个消化道中(即从食管到直肠)均有分布,其分布密度高峰位于幽门。食管、回肠和直肠未检测到生长抑素细胞,生长抑素细胞在幽门部分布密度最高,总体来说生长抑素细胞的分布在胃部较高而在小肠部较低。胃泌素细胞和胰多肽细胞分布在小肠,均在十二指肠分布密度最高。胰高血糖素细胞在胃幽门部分布密度最高,十二指肠、空肠次之,回肠分布密度最低。P-物质细胞仅分布于幽门部。6种内分泌细胞以圆形和锥体形为主,它们广泛分布于消化道黏膜之间、腺泡上皮细胞之间及上皮细胞基部。内分泌细胞的密度分布与其食性、食物组成和生活环境有关,它们的形态与其内、外分泌功能是相适应的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号