首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fractionation of rat liver hepatocytes using a mechanical disruption technique followed by centrifugation is reported; the whole procedure requires approximately 10 min. Marker enzyme distribution data are in good agreement with distribution data from standard techniques connected with the production of three subcellular fractions—cytoplasmic, mitochondrial, and microsomal. Electrophoretic analysis of the mitochondrial and microsomal fractions show total band correspondence between the fractions produced by the method and traditional techniques. Examination of the fractions by electron microscopy supports the view that the mitochondrial fraction is comprised of both intact mitochondria and mitochondria from which the outer membrane has been removed. The microsomal fraction contains discrete vesicles derived from both rough and smooth endoplasmic reticulum.  相似文献   

2.
Phospholipids in mitochondria can be exchanged with those in two microsomal fractions from rough endoplasmic reticulum (rough microsomes) and smooth endoplasmic reticulum (smooth microsomes) in vitro in the presence of cell supernatant. The amounts of phospholipids transferred from each submicrosomal fraction to nitochondria were slightly different. The compositions of the phospholipids transferred to mitochondria from both microsomal fractions were the same, though these two fractions actually had different phospholipid compositions.  相似文献   

3.
The intracellular localization of the post-translationally inserted integral membrane protein, NADH-cytochrome b5 reductase, was investigated, using a quantitative radioimmunoblotting method to determine its concentration in rat liver subcellular fractions. Subcellular fractions enriched in rough or smooth microsomes, Golgi, lysosomes, plasma membrane and mitochondrial inner or outer membranes were characterized by marker enzyme analysis and electron microscopy. Reductase levels were determined both with the NADH-cytochrome c reductase activity assay, and by radioimmunoblotting, and the results of the two methods were compared. When measured as antigen, the reductase was relatively less concentrated in microsomal subfractions, and more concentrated in fractions containing outer mitochondrial membranes, lysosomes and plasma membrane than when measured as enzyme activity. Rough and smooth microsomes had 4-5-fold lower concentrations, on a phospholipid basis than did mitochondrial outer membranes. Fractions containing Golgi, lysosomes and plasma membrane had approximately 14-, approximately 16, and approximately 9-fold lower concentrations of antigen than did mitochondrial outer membranes, respectively, and much of the antigen in these fractions could be accounted for by cross-contamination. No enzyme activity or antigen was detected in mitochondrial inner membranes. Our results indicate that the enzyme activity data do not precisely reflect the true enzyme localization, and show an extremely uneven distribution of reductase among different cellular membranes.  相似文献   

4.
Saturation and competitive binding analyses demonstrated the presence of a high affinity (KD = 0.92 nM), specific antiestrogen binding site (AEBS) in rat liver microsomes and at least 75% of total liver AEBS was recovered in this fraction. When microsomes were further separated into smooth and rough fractions, AEBS was concentrated in the latter. Subsequent dissociation of ribosomes from the rough membranes revealed that AEBS was associated with the membrane and not the ribosomal fraction. Antiestrogen binding activity could not be extracted from membranes with 1 M KCl or 0.5 M acetic acid but could be solubilized with sodium cholate. These data indicate that AEBS is an integral membrane component of the rough microsomal fraction of rat liver.  相似文献   

5.
The subcellular distribution of polyisoprenyl pyrophosphate phosphatase activity has been examined in rat brain by assaying the release of 32Pi from [beta-32P]dolichyl pyrophosphate (Dol-P-P) as described previously (Scher,M.G. and Waechter, C.J. (1984) J. Biol. Chem., 259, 14580-14585). The highest specific activities of Dol-P-P phosphatase in rat brain were found in the Golgi-enriched light microsomal, synaptic plasma membrane and heavy microsomal fractions. A comparative analysis of the distribution of galactosyltransferase and dolichol kinase reveals that Dol-P-P phosphatase activity co-fractionates with galactosyltransferase activity, and that the high level found in the Golgi-enriched fraction is not due to cross-contamination with heavy microsomes. When beta-labelled C95 Dol-P-P and the C95 allylic polyisoprenyl pyrophosphate (Poly-P-P) were compared as substrates for the Golgi-enriched light microsomal and heavy microsomal fractions, similar Km values were calculated for the two pyrophosphorylated substrates for each membrane fraction. Based on these kinetic analyses, the enzyme(s) catalysing this reaction do not distinguish between substrates containing saturated or allylic alpha-isoprene units. When Dol-P-P phosphatase activity was assessed in submicrosomal fractions obtained from rat liver by two separate procedures, the highest specific activity was also detected in the Golgi-enriched fraction. While the specific activities for Dol-P-P phosphatase and sialyltransferase were in the relative order of Golgi greater than smooth endoplasmic reticulum (ER) greater than rough ER, the relative order of dolichol kinase was rough ER greater than smooth ER greater than Golgi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Plasma membranes as well as mitochondrial and microsomal subfractions were subjected to zone electrophoresis. Treatment with neuraminidase, phospholipase A or C does not influence the movement of plasma membranes and smooth microsomes. Trypsin increases mobility of plasma membranes and smooth by about 20%, and further treatment with phospholipase C decreases mobility of plasma membranes, total smooth and smooth I microsomes, which, however, is not the case with smooth II microsomes. Low concentrations of trypsin also solubilize enzyme proteins of smooth microsomes from phenobarbital-treated rat liver, but electrophoretic mobility is not increased, indicating structural differences in induced membranes. The mobility of the outer and inner mitochondrial membranes is significantly higher than that of submitochondrial particles. For microsomes the negative surface charge density occurs in the decreasing order of: ribosomes--rough--smooth I--smooth II. A 10 mM CsCl gradient decreases the mobility of rough microsomes by 40% and of ribosomes by 20% but has no effect on total smooth micromes. On the other hand, 5mM MgCl2 decreased the mobility of all three fractions. EDTA-treated rough and EDTA-treated smooth microsomes have the same electrophoretic mobilities. However, the mobilities of non-treated rough and smooth microsomes differ significantly from each other.  相似文献   

7.
Plasma membranes as well as mitochondrial and microsomal subfractions were subjected to zone electrophoresis. Treatment with neuraminidase, phospholipase A or C does not influence the movement of plasma membranes and smooth microsomes. Trypsin increases mobility of plasma membranes and smooth by about 20%, and further treatment with phospholipase C decreases mobility of plasma membranes, total smooth and smooth I microsomes, which, however, is not the case with smooth II microsomes. Low concentrations of trypsin also solubilize enzyme proteins of smooth microsomes from phenobarbital-treated rat liver, but electrophoretic mobility is not increased, indicating structural differences in induced membranes. The mobility of the outer and inner mitochondrial membranes is significantly higher than that of submitochondrial particles. For microsomes the negative surface charge density occurs in the decreasing order of: ribosomes — rough — smooth I — smooth II. A 10 mM CsCl gradient decreases the mobility of rough microsomes by 40% and of ribosomes by 20% but has no effect on total smooth microsomes. On the other hand, 5 mM MgCl2 decreased the mobility of all three fractions. EDTA-treated rough and EDTA-treated smooth microsomes have the same electrophoretic mobilities. However, the mobilities of non-treated rough and smooth microsomes differ significantly from each other.  相似文献   

8.
Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.  相似文献   

9.
A study of intracellular transport of secretory glycoproteins in rat liver   总被引:1,自引:0,他引:1  
To study the transport of secretory glycoproteins in the endoplasmic reticulum of rat liver, the distribution of nascent glycoproteins in the membrane and luminal fraction of rough and smooth microsomes has been examined after a short-time incorporation of radioactive glucosamine in vivo. 50--60% of the radioactivity was associated with the membranes of rough and smooth microsomes, whereas about 10% of the serum albumin was found in the same fractions. The relative amount of radioactivity in the membranes was the same whether the luminal content of the microsomal vesicles was released by sonication, French press, Triton X-100, Brij 35 or sodium deoxycholate. The distribution of labeled glycoproteins between the membrane and luminal fraction of rough and smooth microsomes did not change during the time interval of 15--120 min after administration of the isotope. The similarity of the labeling patterns obtained after sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis indicated that the same set of glycoproteins were located in the lumen and the membrane of rough and smooth microsomes. A specific precipitation of nascent glycoproteins from both the membrane and luminal fractions of rough and smooth microsomes were obtained with rabbit antiserum against rat serum. The nascent glycoproteins associated with the membranes were not released by high ionic strength or treatment with mercaptoethanol. A slow exchange between [14C]glucosamine-labeled glycoproteins in the lumen and membrane fraction was, however, found.  相似文献   

10.
1. The response of renal beta-glucuronidase with time to the injection of gonadotrophin was investigated in each submicrosomal fraction of rough and smooth microsomal fractions of mouse kidney homogenate. 2. The increase in beta-glucuronidase activity appeared initially in membranes of the rough microsomal fraction, 24h after injection. 3. Afterwards the newly synthesized enzyme appeared in the contents of the rough microsomal fraction and was subsequently found in the smooth microsomal fraction, reaching a maximum concentration in this fraction at 72h. 4. At this juncture, a decrease in the enzyme activity was observed in rough microsomal contents whereas the lysosomal fraction had reached its maximum value. 5. The time-course of the appearance of beta-glucuronidase in the submicrosomal fractions after the gonadotrophin stimulation suggests that the newly synthesized enzyme at the site of membrane-bound ribosomes is transferred across the membrane into cisternae of the rough endoplasmic reticulum, and then is transported into lysosomes via the smooth endoplasmic reticulum. 6. The properties of microsomal and lysosomal beta-glucuronidases were compared.  相似文献   

11.
1. The influence of insulin on rat liver membrane lipid composition, fluidity, some enzyme activities and asymmetry of microsomal phospholipids were investigated. 2. The total phospholipids and cholesterol were increased in microsomes and reduced in plasma membranes from insulin-treated rats. 3. Of all the investigated enzymes participating in the lipid metabolism, only the neutral sphingomyelinase activity was observed to be enhanced, whereas the ceramide-phosphatidylethanolamine (PE) synthetase and phospholipase A2 activities remained unchanged. 4. Insulin administration caused translocation of phosphatidylserine (PS) and PE to the outer leaflet and of phosphatidylinositol (PI) to the inner leaflet of microsomal membranes.  相似文献   

12.
The distribution of rat liver epoxide hydrolase in various subcellular fractions was investigated by immuno-electron-microscopy. Ferritin-linked monospecific anti-(epoxide hydrolase) immunoglobulins bound specifically to the cytoplasmic surfaces of total microsomal preparations and smooth and rough microsomal fractions as well as the nuclear envelope. Specific binding was not observed when the ferritin conjugates were incubated with peroxisomes, lysosomes and mitochondria. The average specific ferritin load of the individual subcellular fractions correlated well with the measured epoxide hydrolase activities. This correlation was observed with fractions prepared from control, phenobarbitone-treated and 2-acetamidofluorene-treated rats.  相似文献   

13.
UDP-glucuronyltransferase activity of neonatal-chick liver or phenobarbital-treated chick-embryo liver catalysed the glucuronidation of 1-naphthol, 4-nitrophenol and 2-aminophenol. Only low transferase activity towards testosterone was detected, and activity towards bilirubin was not detectable. Liver microsomal transferase activity towards the three phenols was increased approx. 20-50-fold by phenobarbital treatment of chick embryos or by transfer of liver cells into tissue culture. A single form of UDP-glucuronyltransferase, which appears to catalyse the glucuronidation of these three phenols, was purified to near homogeneity from phenobarbital-treated chick-embryo liver microsomal fraction for the first time. The use of this purified enzyme as a standard protein facilitated the identification of this protein in chick-embryo liver microsomal fraction. Further, the accumulation of this microsomal protein was observed following phenobarbital treatment of chick embryos and during tissue culture of chick-embryo liver cells. The value of this model system for the study of the induction of UDP-glucuronyltransferase by drugs and hormones is discussed.  相似文献   

14.
The properties and distribution of nonaprenyl-4-hydroxybenzoate transferase in rat liver were investigated with subcellular fractions, liver perfusion, and in vivo labeling with [3H]solanesyl-PP. In addition to some ubiquinone-9, only one labeled intermediate, i.e. nonaprenyl-4-hydroxybenzoate, was obtained. In the total microsomal fraction, the enzyme had a pH optimum of 7.5 and was completely inhibited by Triton X-100 and deoxycholate, but not by taurodeoxycholate and beta-octyl glucoside. Liver, kidney, and spleen demonstrated the highest activities of nonaprenyl-4-hydroxybenzoate transferase. Upon subcellular fractionation, high specific activities were found in smooth II microsomes and Golgi III vesicles. The enzyme was also found in lysosomes and plasma membranes, but only at low levels in rough and smooth I microsomes and mitochondria and not at all in peroxisomes and cytosol. When the product of the transferase reaction was used as a substrate in vitro and in a perfusion system, the only product obtained was end product ubiquinone-9. Although the transferase reaction was associated with the inner, luminal surface of microsomal vesicles, the terminal reaction(s) for ubiquinone-9 synthesis are found at the outer cytoplasmic surface. The results suggest that the major site for ubiquinone synthesis is the endoplasmic reticulum-Golgi system, which also participates in the distribution of ubiquinone-9 to other cellular membranes.  相似文献   

15.
The distribution of activities for synthesis of phosphatidylinositol among cell fractions from rat liver was determined. Activity was concentrated in endoplasmic reticulum; rough and smooth fractions were nearly equal. Golgi apparatus exhibited a biosynthetic rate 44% that of endoplasmic reticulum. Plasma membranes and mitochondrial fractions were only 6% as active as endoplasmic reticulum. Thus, endoplasmic reticulum and Golgi apparatus fractions from rat liver catalyze the net synthesis of phosphatidylinositol in vitro, whereas plasma membrane and mitochondrial fractions do not.  相似文献   

16.
Subfractions of rat liver microsomes (rough, smooth I, and smooth II), isolated in a cation-containing sucrose gradient system, were analyzed. After removal of adsorbed and luminal protein, these subfractions had the same phospholipid/protein ratio, about 0.40. Both the classes and the relative amounts of phospholipids were similar in the three subfractions, but the relative amounts of neutral lipids (predominantly free cholesterol and triglycerides) were higher in smooth I and especially in smooth II than in rough microsomes. Various pieces of evidence indicate that the neutral lipids are tightly bound to the membranes. Glycerol-(3)H was incorporated into the phospholipids of the rough and smooth I microsomes significantly faster than into those of the smooth II membranes; (32)P incorporation followed a similar but less pronounced pattern. Acetate-(3)H was incorporated into the free cholesterol of smooth I microsomes only half as fast as into the other two subfractions. Injection of phenobarbital increased the cellular phospholipid and neutral lipid content in the rough and smooth I, but not in the smooth II microsomes. Consequently, the neutral lipid/phospholipid ratio of all three subfractions remained unchanged after phenobarbital treatment. It is concluded that the membranes of the rough and the two smooth microsomal subfractions from rat liver have a similar phospholipid composition, but are dissimilar in their neutral lipid content and in the incorporation rate of precursors into membrane lipids.  相似文献   

17.
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to examine the polypeptide patterns of rat liver rough and smooth endoplasmic reticulum (ER) membrane fractions stripped of ribosomes. Approximately 67 polypeptides were resolved from the rough ER membrane fraction. The polypeptide pattern of the smooth ER membrane fraction was similar to that of the rough ER membrane fraction, but exhibited substantially lower amounts of some seven polypeptides. Three of these polypeptides, of apparent molecular weights 63,000, 65,000, and 87,000, were of particular interest, as they could not be ascribed to contamination of stripped rough ER membrane fractions by residual ribosomal polypeptides. Conditions of treatment with low concentrations of trypsin were established that markedly diminished the capacity of the stripped rough ER membrane fraction to bind ribosomes in vitro and that also effected a partial detachment of ribosomes from nonstripped rough ER membranes; the results of electrophoretic analyses of rough ER membrane fractions treated in these manners are described. Comparison of the polypeptide patterns of guinea pig, mouse, and rabbit liver ER membrane fractions with rat liver ER membrane fractions revealed considerable variations in the distribution of the polypeptides of 63,000, 65,000, and 87,000 molecular weight among the ER membrane fractions of these species. The combined results of these studies indicate that the polypeptide of 87,000 molecular weight, although particularly sensitive to attack by trypsin, is not involved in the binding of ribosomes to the rough ER membrane fraction. Studies by others (cf. Kreibich, G., Grebenau, R., Mok, W., Pereyra, B., Rodriguez-Boulan, E., and Sabatini, D. D. (1977) Fed. Proc. 36, 656) have implicated the polypeptides of 63,000 and 65,000 molecular weight in this process. The patterns of phosphorylated polypeptides of rough and smooth ER membrane fractions of rat and mouse liver were also examined, using labeling in vivo with sodium [32p]phosphate or in vitro with [gamma-32P]ATP. Approximately 25 phosphorylated components were resolved by electrophoresis in the ER membrane fractions of both species. Evidence is presented that suggests that the great majority of these components are phosphopolypeptides. Differences were noted in the patterns of phosphorylation produced by in vivo and in vitro labeling; minor differences were also observed between the patterns of phosphorylation of the rough and smooth ER membrane fractions in either situation. The overall results afford an indirect approach toward evaluating the possible involvement of specific rough ER membrane polypeptides in ribosome-binding and reveal that liver ER membranes contain a substantially greater number of phosphorylated polypeptides thatn previously reported.  相似文献   

18.
Readdition to rat liver microsomes of dialysed liver post-microsomal supernatant resulted in an almost complete inhibition of the Ca2+-releasing effect of GTP. Such inhibition was heat-labile, and was associated with non-ultrafiltrable supernatant components with a molecular weight higher than 30,000 D. A preliminary fractionation of liver supernatant showed that the inhibitory effect is recovered in the 40-50% ammonium sulfate-precipitated proteins, with an approx. 10-fold enrichment. The active ammonium sulfate fraction did not modify the GTP-induced Ca2+ increase of passive Ca2+ efflux from microsomes, nor did it affect microsomal GTP hydrolysis, which is likely required for its Ca2+ releasing effect. The active ammonium sulfate fraction appears to markedly favour the translocation of GTP-released Ca2+ into a microsomal GTP-insensitive pool. Separation of liver microsomes in smooth and rough fractions revealed that such GTP-insensitive Ca2+ pool is almost completely associated with smooth microsomes.  相似文献   

19.
S-Adenosylhomocysteine (AdoHcy) binding to various membrane fractions of rat liver was determined at pH 7.4, using an oil centrifugation technique. The highest binding activity was found in the heavy microsomal (M-H) fraction enriched in endoplasmic reticulum, but high binding activity was also observed in the light microsomal fractions enriched in blood sinusoidal membranes (M-L fraction), and the heavy nuclear fraction (N-H fraction) containing the contiguous area. A substantial portion of AdoHcy binding activity in the M-L fraction may be ascribed to contamination of this fraction with endoplasmic reticulum, as indicated by the distribution of NADPH cytochrome c reductase activity. Binding activity was low in the light nuclear (N-L) fraction corresponding to the bile canaliculi. Phospholipid methyltransferase activity was determined in the same membrane fractions under similar conditions (pH 7.4), and in the absence and presence of added phospholipids. The distribution of the enzyme activity was dependent on the presence of exogenous phospholipids, and grossly similar to AdoHcy binding, the highest activities being observed in the M-H and the M-L fractions. The N-H fraction, rich in AdoHcy-binding activity, demonstrated, however, a very low phospholipid methyltransferase activity. It is concluded that AdoHcy-binding activity is not confined to the plasma membranes, and a major fraction of the binding activity resides on membranes derived from the endoplasmic reticulum. Also, the present results add to previous data suggesting that phospholipid methyltransferase does not totally account for the AdoHcy-binding sites on rat liver membranes.  相似文献   

20.
Treatment of rat liver rough microsomes (3.5 mg of protein/ml) with sublytical concentrations (0.08%) of the neutral detergent Triton X-100 caused a lateral displacement of bound ribosomes and the formation of ribosomal aggregates on the microsomal surface. At slightly higher detergent concentrations (0.12-0.16%) membrane areas bearing ribosomal aggregates invaginated into the microsomal lumen and separated from the rest of the membrane. Two distinct classes of vesicles could be isolated by density gradient centrifugation from microsomes treated with 0.16% Triton X-100: one with ribosomes bound to the inner membrane surfaces ("inverted rough" vesicles) and another with no ribosomes attached to the membranes. Analysis of the fractions showed that approximately 30% of the phospholipids and 20-30% of the total membrane protein were released from the membranes by this treatment. Labeling with avidin-ferritin conjugates demonstrated that concanavalin A binding sites, which in native rough microsomes are found in the luminal face of the membranes, were present on the outer surface of the inverted rough vesicles. Freeze-fracture electron microscopy showed that both fracture faces had similar concentrations of intramembrane particles. SDS PAGE analysis of the two vesicle subfractions demonstrated that, of all the integral microsomal membrane proteins, only ribophorins I and II were found exclusively in the inverted rough vesicles bearing ribosomes. These observations are consistent with the proposal that ribophorins are associated with the ribosomal binding sites characteristic of rough microsomal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号