首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A high lethal efficiency was observed when the decay of two radioactive isotopes of copper, 64Cu or 67Cu, occurred in mammalian cells. The lethal efficiency is of the same order for both isotopes in spite of their different decay processes. As the lethal event could be attributed to an injury inside the cellular DNA only, these results suggest that, even if present in the DNA in trace amounts solely, copper atoms are essential chromatin components. Their behaviour differs depending on whether the cell is a tumor or a non tumor cell because their lethal efficiencies are different (0.5 and 0.1 respectively).  相似文献   

2.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

3.
The copper complex of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) or CuKTS is reduced and dissociated upon reaction with Ehrlich cells. Titration of the cells with the complex leads to the specific binding of copper to metallothionein with 1 to 1 displacement of its complement of zinc. Under conditions of complete titration of metallothionein, 1.25-2.5 nmol CuKTS/10(7) cells, cellular DNA synthesis is rapidly inhibited but no long term effects on cell proliferation are observed. The kinetics of redistribution of Cu and Zn in Ehrlich cells in culture and in animals were studied after pulse reaction of CuKTS with cells. After exposure of cells to the noncytotoxic concentration of 2.5 nmol of CuKTS/10(7) cells, nonmetallothionein bound copper is lost rapidly from the cells, after which copper in metallothionein decays. New zinc metallothionein is made as soon as exposed cells are placed in culture. New synthesis stops when the level of zinc in metallothionein reaches control levels. A second pulse treatment of cells with CuKTS to displace zinc from metallothionein again stimulates new synthesis of the protein to restore its normal concentration. The kinetics of metal metabolism in Ehrlich cells exposed to 5.5 nmol of CuKTS/10(7) cells, which inhibits cell proliferation, are qualitatively similar except there is a pronounced lag before new zinc metallothionein is synthesized. The Ehrlich ascites tumor in mice responds to CuKTS similarly to cells in culture. It is also shown that cultured Ehrlich cells do not make extra zinc metallothionein in the presence of high levels of ZnCl2, and fail to accumulate copper in the presence of large concentrations of CuCl2.  相似文献   

4.
The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.  相似文献   

5.
Mechanistic details of the interaction of 1,10-phenanthroline and its copper complex with Ehrlich ascites tumor cells were examined, using inhibition of cell proliferation, DNA breakage, and increased membrane permeability as indices of cellular damage. The metal chelating agent, 1,10-phenanthroline (OP), the 1:0.5 complex of 1,10-phenanthroline and CuCl2 [(OP)2Cu], and CuCl2 inhibited growth of Ehrlich ascites tumor cell monolayers during 48-h treatments by 50% at about 3.5, 2, and 70 nmol/10(5) cells/mL, respectively. (OP)2Cu at 10 nmol/10(5) cells also enhanced uptake of trypan blue dye during 6 h of treatment, while dye uptake in OP- and CuCl2-treated cells remained similar to controls. DNA breakage, measured by DNA alkaline elution, was produced during 1-h treatments with (OP)2Cu at drug/cell ratios similar to those producing growth inhibition. Copper uptake was similar for both (OP)2Cu and CuCl2. Electron spin resonance (ESR) spectroscopy suggested that cellular ligands bind copper added as (OP)2Cu or CuCl2 and then undergo time-dependent reductions of Cu(II) to Cu(I) for both forms. Inhibition of (OP)2Cu-induced single-strand scission and trypan blue uptake by scavengers of activated oxygen is consistent with participation of superoxide and H2O2 in both processes. In contrast, superoxide dismutase (SOD) did not reduce the magnitude of the fraction of cellular DNA appearing in lysis fractions prior to alkaline elution of (OP)2Cu-treated cells. Dimethyl sulfoxide (DMSO) inhibited uptake of trypan blue dye but did not inhibit DNA strand scission produced by (OP)2Cu. Thus, multiple mechanisms for generation of oxidative damage occur in (OP)2Cu-treated cells. Growth inhibition produced by OP or (OP)2Cu, as well as the low levels of strand scission produced by OP, was not reversed by scavengers.  相似文献   

6.
The proteins that bind copper when it first enters cells are likely to play roles in its intracellular distribution and utilization. When hepatocytes were incubated with 64Cu(II), the time-dependence of the subcellular distribution of 64Cu was consistent with one or more cytosolic proteins distributing copper to the mitochondrial and nuclear fractions. Cytosolic copper was reproducibly distributed among four protein fractions from Sephadex G-150 columns at the earliest time (1 min) and at the lowest concentration used [2 microM-64Cu(II)] with both rat and mouse hepatocytes. Copper binding to proteins in these functions was sensitive to copper metabolic status. Hepatocytes from nutritionally copper-deficient rats or neonatal (9-30 days old) developing rats showed an inverse correlation between copper binding to metallothionein and copper binding to proteins in fraction I (approximately 88 kDa apparent) and fraction II (approximately 38 kDa apparent). The distribution of cytosolic 64Cu from the brindled-mouse model of Menkes disease indicated decreased binding by a protein in fraction I. Brindled-mouse hepatocytes also contain decreased levels of a approximately 55 kDa protein or subunit, which most likely represents a liver-specific secondary response to the primary defect. The results are consistent with one or more copper-binding proteins in fractions I and II having significant functions in intracellular copper metabolism.  相似文献   

7.
The aim of the present study was the synthesis, the determination of formation constants, and the evaluation of the antiproliferative activity of two copper(II) complexes formed with triazole-type ligands. The synthesis of the unsymmetrical triazole ligand 4-amino-3-aminomethyl-5-methyl-1,2,4-triazole (L1), and its copper(II) complex is reported. The ligand was prepared by functionalization of the carboxylate function of tert-butyloxycarbonyl (BOC) protected glycine O-methyl ester. All intermediates and final products were isolated and characterized with IR, 1H NMR, and elemental analysis. X-ray structures of the ligand as a sulfate salt ((H2L1)2SO4.H2O) and the copper(II) complex [CuCl2(L1)(2)] are described. The ligand forms a (N,N) bidentate chelate with the amino group and one triazole nitrogen atom. The tetragonally distorted octahedral coordination of Cu(II) results from two axially coordinated chloride ions. Protonation constants for L1 and speciation of the Cu(II)/L1 system were determined in 0.1 M aqueous KCl solution at 25 degrees C. Complexes formed in solution were also characterized by visible spectrophotometry. Ligand substitution competition between L1 and glycine has also been studied using potentiometric titrations. Antiproliferative activities of ([CuCl2(L1)2]) and [CuCl2(H2L2)]Cl, where HL2 is the 5-thioxo analog of L1, against human tumor cell lines HT1080 and HT29 as well as normal human fibroblasts (HF) are presented along with the antiproliferative activities of L1, CuCl2, and cisplatin. Activity of these two complexes are discussed and compared with the activity of analogous compounds reported in the literature which contain pyridyl groups in place of the aminomethyl group. In particular, it is suggested that a lypophilic residue such as a pyridyl group is important for antiproliferative activity of this class of compounds.  相似文献   

8.
A new ligand derivative of 1,4,7-triazacyclononane (TACN), 2-[4,7-bis(2-pyridylmethyl)-1,4,7-triazacyclononan-1-yl]acetic acid ( 6), has been synthesized and its complexation behavior toward Cu2+ ions investigated. The ligand 6 has been characterized by spectroscopic methods, and a molecular structure of a corresponding Cu(II) complex has been elucidated by single-crystal X-ray analysis. The suitability of 6 for conjugation to peptide substrates has been shown by amide coupling of 6 to the stabilized derivative of bombesin (BN), beta Ala-beta Ala-[Cha13, Nle14]BN(7-14), to give the conjugate 8. The free ligand 6 and the bioconjugate 8 were labeled with 64Cu2+, and the resulting complexes, 64Cu subset6 and 64Cu subset8 , were found to be stable in the presence of a large excess of a competing ligand (cyclam) or copper-seeking superoxide dismutase (SOD), as well as in rat plasma. Biodistribution studies of 64Cu subset8 in Wistar rats showed a high activity uptake into the pancreas (5.76 +/- 0.25 SUV, 5 min p.i.; 3.93 +/- 0.25 SUV, 1 h p.i.), which is the organ with high levels of gastrin-releasing peptide receptor (GRPR). This receptor is overexpressed in a large number of breast and prostate carcinomas. The novel 64Cu subset6 complex had a dominating influence on the nonspecific activity biodistribution of its BN conjugate, since the distribution data of 64Cu subset6 are similar to those of 64Cu subset8 . The 64Cu complexes exhibited a low activity accumulation in the liver tissue and an extensive renal clearance, which was distinctively different to the biodistribution of 64CuCl 2, suggesting that 64Cu subset6 does not undergo significant demetalation, but rather exhibits high in vivo stability.  相似文献   

9.
Complexes of general formula [{CuX}2(YNC10H14O)] (X = Cl; Y = NHMe, NH2 or X = Br; Y = NH2) were synthesised from camphor hydrazone ligands (YNC10H14O) by reaction with the suitable copper(I) halide. Structural analysis by X-rays performed on a red crystal of [{CuCl}2(Me2NNC10H14O)] revealed that the complex is a one-dimensional copper polymer formed by two rather different copper units bridged by chloride. One of the copper units displays a tetrahedral geometry while the other is linear. Although the geometries and neighbourhoods of the two copper units are very different the oxidation state of the metal is the same, i.e. Cu(I) as corroborated by magnetic and electrochemical measurements.The ability of [{CuCl}2(Me2NNC10H14O)] to promote the activation of 4-pentyn-1-ol towards cyclization was studied under homogeneous or heterogeneous experimental conditions. The best results were obtained under homogeneous conditions at 40 °C.  相似文献   

10.
The interactions of Cu(II)-Arg-Gly-His-Xaa metallopeptides with DNA (where Xaa is L-Leu or L-Glu) were investigated by DNA-fiber EPR spectroscopy, ESI-MS spectrometry, and agarose gel electrophoresis. The average angle between the g// axis of Cu(II)-Arg-Gly-His-Leu and the DNA-fiber axis increased from 45 degrees at room temperature to 90 degrees at -150 degrees C. The Cu(II)-Arg-Gly-His-Glu complex partly dissociated on DNA to several species. The g//value (2.341) of the main species was smaller than that (2.377) observed for free Cu(II) ion bound to DNA. This indicated that the Cu(II) ion was transferred by the peptide to a DNA site where the free Cu(II) ion can hardly reach. ESI-MS spectra of a mixture of the Cu(II) peptide complex and the oligodeoxynucleotide, [d(CGCGTATACGCG)], suggested that the maximum binding stoichiometries of Cu(II) peptide complexes and double stranded oligodeoxynucleotides were 3:1 for Cu(II)-Arg-Gly-His-Leu and 2:1 for Cu(II)-Arg-Gly-His-Glu, respectively. Cu(II)-Arg-Gly-His-Glu completely converted the supercoiled DNA to the nicked-circular form, whereas the cleavage activity was considerably reduced when excess ligand was added. In the presence of excess peptide, nicked DNA formation ratios were 64% for Cu(II)-Arg-Gly-His-Leu and 15% for Cu(II)-Arg-Gly-His-Glu, respectively. The negative charge on Cu(II)-Arg-Gly-His-Glu reduced the affinity of the complex for DNA and enhanced the specificity of the binding.  相似文献   

11.
Novel homodinuclear Cu(II) (K1), heterodinuclear Cu(II)-Mn(II) (K2) and homotrinuclear Cu(II) (K3) complexes with a novel oxime-type ligand have been prepared and their nucleolytic activities on pCYTEXP were established by neutral agarose gel electrophoresis. The analyses of the cleavage products obtained electrophoretically indicate that although the examined complexes induces very similar conformational changes on supercoiled DNA by converting supercoiled form to nicked form than linear form in a sequential manner as the complex concentration or reaction period is increased, K3 is less effective than the two others. The oxime complexes were nucleolytically active at physiological pH values but the activities of K1 or K2 were diminished by increasing the pH of the reaction mixture. In contrast, K3 makes dominantly single strand nicking by producing nicked circles on DNA at almost all the applied pH values. Metal complex induced DNA cleavage was also tested for inhibition by various radical scavengers as superoxide dismutase (SOD), azide, thiourea and potassium iodide. The antioxidants inhibited the nucleolytic acitivities of the oxime complexes but SOD afforded no protection indicating that the nucleolytic mechanism involves of copper and/or manganese complex-mediated reactive oxygen species such as hydroxyl radicals being responsible for the oxidative DNA cleavage.  相似文献   

12.
Redox properties of metallothioneins (MTs) and Cu in the cytosol from Long-Evans Cinnamon (LEC) rat livers 13 weeks after birth were investigated. MTs from LEC rat livers contain 8 g atoms of Cu and 1 g atom of Zn per mole of protein (Cu(I)8-MTs). Titration of Cu(I)8-MTs with CuCl2 indicates that Cu(I)8-MTs were able to reduce further 2-g atoms of cupric ions per mole MTs as bound form. Hg2+-induced hydroxyl radical generation from Cu(I)8-MTs was demonstrated by ESR using the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The intensity of DMPO-OH signal from Cu-loaded MTs was increased with the increasing number of Cu in MTs. The used cytosol fraction contained 1.37 mM total Cu and 5 mM DTNB titrable-SH groups has a potential to reduce 2 mM CuCl2. No ESR signal due to Cu2+ was also detected with LEC rat liver cytosol, whereas strong Cu2+ signal appeared by the addition of HgCl2. The rate constants for the reaction of Cu(I)8-MTs with superoxide and hydroxyl radicals were estimated to be 2 x 10(6) and > or = 10(12) M(-1)s(-1), respectively, from competition kinetics. Cu2+-catalyzed oxidation of DNA was strongly inhibited both in the presence of Cu-unsaturated MTs and GSH. The results suggest that Cu(I)8-MTs from LEC rat livers just before hepatitis still act as antioxidants.  相似文献   

13.
The delivery of copper to mammary gland and milk and the effects of lactation were examined in rats. Traces of (67)Cu/(64)Cu(II) were injected intraperitoneally or intravenously into virgin rats or lactating rats (2-5 days postpartum), and incorporation into blood, milk, and tissues was monitored. In virgin rats, most of the isotope first entered the liver and kidney. In lactating rats, almost 60% went directly to the mammary gland. Uptake rates and copper contents of the mammary gland were 20-fold higher in lactation. (67)Cu/(64)Cu appeared in milk and milk ceruloplasmin as rapidly as in mammary tissue and when there was no (67)Cu/(64)Cu-ceruloplasmin in the maternal plasma. Plasma (125)I-labeled albumin entered milk much more slowly. Milk ceruloplasmin (10 mg/l) had 25% of the (67)Cu/(64)Cu. Milk copper was 3.3 mg/l. Thus lactation markedly enhances the avidity of the mammary gland for copper, diverting most of it from liver and kidney to that tissue. Also, the primary source of milk ceruloplasmin is the mammary gland and not the maternal plasma.  相似文献   

14.
At present, all data on Cu uptake and metabolism have been derived from radioactive uptake experiments. These experiments are limited by the availability of the radioactive isotopes 64Cu or 67Cu, and their short half-life (12.5 and 62 h, respectively). In this paper, we investigate an alternative method to study the uptake of Cu with natural isotopes in HepG2 cells, a liver cell line used extensively to study Cu metabolism. In nature, Cu occurs as two stable isotopes, 63Cu and 65Cu (63Cu/65Cu = 2.23). This ratio can be measured accurately using inductively coupled plasma mass spectrometry (ICP-MS). In initial experiments, we attempted to measure the time course of Cu uptake using 65Cu. The change in the 63Cu/65Cu ratio, however, was too small to allow measurement of Cu uptake by the cells. To overcome this difficulty, the natural 63Cu/65Cu ratio in HepG2 cells was altered using long-term incubation with 63Cu. This had a significant effect on Cu concentration in HepG2 cells, changing it from 81.9 +/- 9.46 pmol microg DNA(-1) (week 1) to 155 +/- 8.63 pmol microg DNA(-1) (week 2) and stabilising at 171 +/- 4.82 pmol microg DNA(-1) (week 3). After three weeks of culture with 2 microM 63Cu the 63Cu/65Cu changed from 2.18 +/- 0.05 to 15.3 +/- 1.01. Cu uptake was then investigated as before using 65Cu. Uptake was linear over 60 min, temperature dependent and consistent with previous kinetics data. These observations suggest that stable isotope ICP-MS provides an alternative technique for the study of Cu uptake by HepG2 cells.  相似文献   

15.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

16.
The copper(II) complex of 3,5-diisopropylsalicylate is a lipophilic water-insoluble binuclear complex, Cu(II) (3,5-DIPS) , that has attracted interest because of a wide range of pharmacological activities. This study was undertaken to examine bonding interactions between the complex and human serum albumin (HSA) to help elucidate the mode of transport of the complex in vivo. Electron paramagnetic resonance, numerical magnetic resonance and UV-visible absorption spectroscopic studies were performed using 200 M aqueous solutions (pH 7.5) of HSA to which had been added up to three molar equivalents of CuCl , CuSO , or Cu(II) (3,5-DIPS). Both EPR and UV-visible spectra demonstrated the presence of more than one copper bonding site on HSA, and proton NMR spectra showed that the 3,5-DIPS ligand is also bonded to HSA. These results indicate that there is no observable direct coordination of the ligand to copper in the presence of HSA, and that the majority of the copper and 3,5-DIPS bond to HSA at separate sites. Addition of solid Cu(II) (3,5-DIPS) to HSA at pH 7.5 similarly resulted in spectra that suggest that there are no ternary Cu(II)(3,5-DIPS), Cu(II)(3,5-DIPS) , or Cu(II) (3,5-DIPS) complexes formed with HSA. It is concluded that any ternary complexes formed in the presence of HSA are below the spectroscopic detection limits and represent less than 5% of the total copper. © Rapid Science 1998.  相似文献   

17.
The oxidation-promoting reactivity of copper(II) complex of aminoglycosidic antibiotic amikacin [Cu(II)-Ami] in the presence of hydrogen peroxide, was studied at pH 7.4, using 2'-deoxyguanosine (dG), pBR322 plasmid DNA and yeast tRNAPhe as target molecules. The mixtures of complex with H2O2 were found to be efficient oxidants, converting dG to its 8-oxo derivative, generating strand breaks in plasmid DNA and multiple cleavages in tRNAPhe. The complex underwent autooxidation as well, with amikacin hydroperoxides as likely major products. This reactivity pattern was found to be due to a combination of metal-bound and free hydroxyl radicals.  相似文献   

18.
Interaction of cupric and calcium ions with DNA entrapped in acrylamide gel was studied by means of ion-exchange method. Ion-exchangers on the basis of DNA were obtained by polymerization of acrylamide with and without warming-up. Samples of DNA with different degrees of denaturation were also used for preparation of ion-exchangers. It was demonstrated that ion-exchange capacity is determined by the number of phosphate groups of DNA entrapped in gel. Cu2+ and Ca2+ ion-exchange equilibrium on the macromolecules of immobilized DNA was studied at different temperatures. Ion-exchange equilibrium constant alpha Cu2+ Ca2+ was shown to vary from 1,9 to 8,2 an increase of selectivity for Cu2+ ions taking place under conditions favouring denaturation of DNA. Stoichiometric ratio between the quantity of the phosphate groups and the number of equivalents of Cu2+ and Ca2+ was observed in all the experiments. Lack of over-equivalent absorption of CuCl2 on the DNA molecules indicates that chloride ions do not participate in charge neutralization within the Cu2+.DNA complex. It means that Cu2+ ions interact with phosphate groups of DNA coordinate simultaneously with DNA bases only.  相似文献   

19.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

20.
Properties of the reactions of dithiocarbamates and their Cu(II) or Fe(III) complexes with Ehrlich cells were determined and related to their effects on the inhibition of cell proliferation caused by bleomycin and Cu bleomycin. In complete culture medium containing Eagle's minimal essential medium plus Earles salts and 2.5% fetal calf serum, dimethyl- and diethyldithiocarbamates and their copper complexes inhibit cell proliferation and cause cell death. The copper complexes are more effective agents. Ferric tris-diethyldithiocarbamate is also a cytotoxic species. In contrast, when cells are exposed to dimethyldithiocarbamate or its copper complex in Ringer's buffer under metal-restricted condition, washed, and then placed in complete medium, the copper complex is much more active in inhibiting cell growth. The difference is magnified when dihydroxyethyldithiocarbamate and N-methylglucamine dithiocarbamate and their copper complexes are compared in complete media. Incubation of bleomycin or copper bleomycin with Ehrlich cells in Ringer's buffer with or without dimethyldithiocarbamate or bis-dimethyldithiocarbamato Cu(II) leads to no enhancement of cytotoxicity from combinations of agents, except when the two copper complexes are present. Diethyl- or dimethyldithiocarbamate readily extracts copper from Cu(II)bleomycin and iron from Fe(III)bleomycin when ethylacetate is present to remove the tris-dithiocarbamato Fe(III) complex from aqueous solution. When bis-dimethyldithiocarbamato Cu(II) is incubated with Ehrlich cells, copper is released from the complex and bound to high molecular weight and metallothionein fractions. A reductive mode of dissociation of the copper complexes in cells is supported by ESR experiments. Reactions of diethyl- and dimethyldithiocarbamato Cu(II) with thiol compounds demonstrates one possible mechanism of reduction of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号