首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. G. Cupples  J. H. Miller 《Genetics》1988,120(3):637-644
Forty-nine amino acid substitutions were made at four positions in the Escherichia coli enzyme β-galactosidase; three of the four targeted amino acids are thought to be part of the active site. Many of the substitutions were made by converting the appropriate codon in lacZ to an amber codon, and using one of 12 suppressor strains to introduce the replacement amino acid. Glu-461 and Tyr-503 were replaced, independently, with 13 amino acids. All 26 of the strains containing mutant enzymes are Lac(-). Enzyme activity is reduced to less than 10% of wild type by substitutions at Glu-461 and to less than 1% of wild type by substitutions at Tyr-503. Many of the mutant enzymes have less than 0.1% wild-type activity. His-464 and Met-3 were replaced with 11 and 12 amino acids, respectively. Strains containing any one of these mutant proteins are Lac(+). The results support previous evidence that Glu-461 and Tyr-503 are essential for catalysis, and suggest that His-464 is not part of the active site. Site-directed mutagenesis was facilitated by construction of an f1 bacteriophage containing the complete lacZ gene on a single EcoRI fragment.  相似文献   

2.
Position-specific incorporation of nonnatural amino acids into proteins (nonnatural mutagenesis) via an in vitro protein synthesizing system was applied to incorporate a variety of amino acids carrying specialty side groups. A list of nonnatural amino acids thus far successfully incorporated through in vitro translation systems is presented. The position of nonnatural amino acid incorporation was directed by four-base codon/anticodon pairs such as CGGG/CCCG and AGGU/ACCU. The four-base codon strategy was more efficient than the amber codon strategy and could incorporate multiple nonnatural amino acids into single proteins. This multiple mutagenesis will find wide applications, especially in building paths of electron transfer on proteins. The extension of translation systems by the introduction of nonnatural amino acids, four-base codon/anticodon pairs, orthogonal tRNAs, and artificial aminoacyl tRNA synthetases, is a promising approach towards the creation of "synthetic microorganisms" with specialty functions.  相似文献   

3.
Thymidylate synthase (TS) catalyzes methylation of dUMP to dTMP and is the target of cancer chemotherapeutic agents (e.g. 5-fluorouracil). Here, we used error-prone PCR to mutagenize the full-length human TS cDNA and then selected mutants resistant to 5-fluorodeoxyuridine in a bacterial complementation system. We found that resistant mutants contained 1-5 amino acid substitutions and that these substitutions were located along the entire length of the polypeptide. Mutations were frequent near the active site Cys(195) and in the catalytically important Arg(50) loop; however, many mutations were also distributed throughout the remainder of the cDNA. Mutants containing a single amino acid replacement identified the following 14 residues as unreported sites of resistance: Glu(23), Thr(51), Thr(53), Val(84), Lys(93), Asp(110), Asp(116), Pro(194), Ser(206), Met(219), His(250), Asp(254), Tyr(258), and Lys(284). Many of these residues are distant from the active site and/or have no documented function in catalysis or resistance. We conclude that mutations distributed throughout the linear sequence and three-dimensional structure of human TS can confer resistance to 5-fluorodeoxyuridine. Our findings imply that long range interactions within proteins affect catalysis at the active site and that mutations at a distance can yield variant proteins with desired properties.  相似文献   

4.
Tang L  Gao H  Zhu X  Wang X  Zhou M  Jiang R 《BioTechniques》2012,52(3):149-158
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.  相似文献   

5.
Highly conserved amino acids that form crucial structural elements of the catalytic apparatus can be used to account for the evolutionary history of serine proteases and the cascades into which they are organized. One such evolutionary marker in chymotrypsin-like proteases is Ser(214), located adjacent to the active site and forming part of the primary specificity pocket. Here we report the mutation of Ser(214) in thrombin to Ala, Thr, Cys, Asp, Glu, and Lys. None of the mutants seriously compromises active site catalytic function as measured by the kinetic parameter k(cat). However, the least conservative mutations result in large increases in K(m) because of lower rates of substrate diffusion into the active site. Therefore, the role of Ser(214) is to promote the productive formation of the enzyme-substrate complex. The S214C mutant is catalytically inactive, which suggests that during evolution the TCN-->AGY codon transitions for Ser(214) occurred through Thr intermediates.  相似文献   

6.

Background

Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained via screening of reduced-size ensembles.

Methodology/Principal Findings

The strategy involves combining a sequential mutagenesis scheme to reduce library size with structurally stabilizing mutations, chaperone complementation, and reduced temperature of gene expression. In six steps, we eliminated a common buried residue, Phe, from the green fluorescent protein (GFP), while retaining activity. A GFP variant containing 11 Phe residues was used as starting scaffold to generate 10 separate variants in which each Phe was replaced individually (in one construct two adjacent Phe residues were changed simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP activity. Successive rounds of mutagenesis generated active GFP variants containing, three, two, and zero Phe residues. These GFPs all displayed progenitor-like fluorescence spectra, temperature-sensitive folding, a reduced structural stability and, for the least stable variants, a reduced steady state abundance.

Conclusions/Significance

The results provide strategies for the design of novel GFP reporters. The described approach offers a means to enable engineering of active proteins that lack certain amino acids, a key step towards expanding the functional repertoire of uniquely labeled proteins in synthetic biology.  相似文献   

7.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

8.
The C-terminal residue of thymidylate synthase (TS) is highly conserved and has been implicated in cofactor binding, catalysis, and a conformational change. The codon for the C-terminal valine of Lactobacillus casei TS has been replaced with those for 19 other amino acids and the amber stop codon. Fourteen of the resulting mutant proteins were active by genetic complementation using a Thy- strain of Escherichia coli, and 18 mutants were active by in vitro assay. Only the aspartate and amber mutations had undetectable activity. All of the mutants were expressed at high levels (5-30% of soluble protein) and were purified by phosphocellulose chromatography. In general, the alterations at position 316 led to little effect on the Km for dUMP, an increase in Km for the folate cofactor, and a decrease in kcat. The observations show that TS can tolerate the substitution of most amino acids for valine at the C-terminus without a complete loss of activity, that hydrophobic substitutions are preferred, and that the C-terminal side chain is involved in both cofactor binding and catalysis. There was an excellent correlation between log kcat and hydrophobicity of the side chain at position 316 and an inverse correlation between log Km and the hydrophobicity of this residue. Kinetic parameters of the cofactor-independent TS-catalyzed dehalogenation of BrdUMP showed no variation with the side chain at position 316. In context of the structure of TS, it is proposed that binding of the cofactor triggers a conformational change in which the C-terminal side chain undergoes hydrophobic interactions that stabilize a rate-limiting transition state of the TS reaction.  相似文献   

9.
D K Dube  L A Loeb 《Biochemistry》1989,28(14):5703-5707
We have remodeled the gene coding for beta-lactamase by replacing DNA at the active site with random nucleotide sequences. The oligonucleotide replacement (Phe66XXXSer70XXLys73) preserves the codon for the active serine-70 but also contains 15 base pairs of chemically synthesized random sequences that code for 2.5 x 10(6) amino acid substitutions. From a population of Escherichia coli infected with plasmids containing these random inserts, we have selected seven new active-site mutants that render E. coli resistant to carbenicillin and a series of related analogues. Each of the new mutants contains multiple nucleotide substitutions that code for different amino acids surrounding serine-70. Each of the mutants exhibits a temperature-sensitive beta-lactamase activity. This technique offers the possibility of constructing alternative active sites in enzymes on the basis of biological selection for functional variants.  相似文献   

10.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) has a high level of transglycosylation activity. To determine which amino acids are involved in this activity, we employed deletion analysis, as well as random and site-directed mutagenesis. Using PCR random mutagenesis, 11 mutants with greatly decreased levels of enzyme activity were isolated. Six catalytically essential amino acids were identified by site-directed mutagenesis. Mutants E173G, E175Q, D206G, and D270N had markedly reduced hydrolysis activity, while mutants V109D, E173D, and E173Q lost all enzymatic activity, indicating that Val-109 and Glu-173 are important for the catalytic function. Moreover, we isolated a random mutation that abolished the transglycosylation activity without affecting the hydrolysis activity. The Trp-216 to Arg mutation was identified, by site-directed mutagenesis, as that responsible for the loss of transglycosylation activity. While other mutants of Trp-216 showed reduced activity, mutation to another positively charged residue (Lys) also abolished the transglycosylation activity. Sequence comparison with two other endo-beta-N-acetylglucosaminidases, that possess transglycosylation activity and that have been cloned recently, reveals a high degree of identity in the N-terminal regions of the three enzymes. These results indicate that the tryptophan residue at position 216 of Endo-A has a key role in the transglycosylation.  相似文献   

11.
12.
A 2.9 kbp region from within the inverted repeat of Nicotiana chloroplast DNA hybridized with a chloroplast DNA fragment from Euglena containing the complete rps12 gene coding for ribosomal protein S12. Nucleotide sequencing within this region revealed the existance of two rps12 coding stretches interrupted by 540 bp having class II intron structure. Joining and decoding the exon regions produced a sequence of 85 amino acids colinear and 81% homologous to the S12 protein of Euglena chloroplasts and E. coli, starting from amino acid residue 38 to the stop codon. Immediately upstream of codon 38, conserved intron sequences were located. However, the 5' 37 codon of Nicotiana chloroplast rps12 could not be identified by electron microscopy of RNA-DNA hybrids within a DNA region extending 4000 bp upstream of codon 38, nor by computer search of a completely sequenced region extending for more than 9000 bp upstream of this codon. In E. coli, alteration in rps12 codons 42 or 87 causes streptomycin resistance. However, the nucleotide sequence of the identified rps12 exons in two Nicotiana chloroplast mutants resistant to streptomycin were found to be identical to that of wild type.  相似文献   

13.
In Plasmodium falciparum, dihydrofolate reductase and thymidylate synthase activities are conferred by a single 70-kDa bifunctional polypeptide (DHFR-TS, dihydrofolate reductase-thymidylate synthase) which assembles into a functional 140-kDa homodimer. In mammals, the two enzymes are smaller distinct molecules encoded on different genes. A 27-kDa amino domain of malarial DHFR-TS is sufficient to provide DHFR activity, but the structural requirements for TS function have not been established. Although the 3'-end of DHFR-TS has high homology to TS sequences from other species, expression of this protein fragment failed to yield active TS enzyme, and it failed to complement TS(-) Escherichia coli. Unexpectedly, even partial 5'-deletion of full-length DHFR-TS gene abolished TS function on the 3'-end. Thus, it was hypothesized that the amino end of the bifunctional parasite protein plays an important role in TS function. When the 27-kDa amino domain (DHFR) was provided in trans, a previously inactive 40-kDa carboxyl-domain from malarial DHFR-TS regained its TS function. Physical characterization of the "split enzymes" revealed that the 27- and the 40-kDa fragments of DHFR-TS had reassembled into a 140-kDa hybrid complex. Thus, in malarial DHFR-TS, there are physical interactions between the DHFR domain and the TS domain, and these interactions are necessary to obtain a catalytically active TS. Interference with these essential protein-protein interactions could lead to new selective strategies to treat malaria resistant to traditional DHFR-TS inhibitors.  相似文献   

14.
The gene encoding a catalytically active deletion peptide, the C180 peptide, of the S-1 subunit of pertussis toxin was engineered to facilitate mutagenesis at the Trp-26 (wild-type) coding sequence. A synthetic double-stranded oligonucleotide was inserted into the C180 gene such that all possible codons would be introduced into position 26. Seven individual mutants of the C180 peptide which possessed amino acid substitutions at residue 26 (collectively termed C180W26n peptides) were purified from periplasmic extracts of Escherichia coli. Each C180W26n peptide was present as a single major peptide that had an apparent molecular mass of between 20.9 and 24.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and each showed similar immunoreactivity relative to the C180 peptide. The C180W26n peptides demonstrated marked reduction of both ADP-ribosyltransferase and NAD glycohydrolase activities at 25 nM and 10 microM NAD, respectively. Kinetic analysis of the two most active mutants, C180W26F and C180W26Y, revealed that the major perturbation of NAD glycohydrolase activity was due to an increase (approximately 20-fold) in the Km for NAD between these mutants and the C180 peptide.  相似文献   

15.
This paper describes a novel mechanism for reversion of nonsense mutations in the trpA gene of Escherichia coli. This mechanism, deletion of the nonsense codon, was discovered in the course of selecting for missense revertants of trpA(UGA211) and for catalytically active tryptophan synthetase alpha chain revertants of trpA(UAA234) and trpA(UAG234). Each type of revertant trpA was cloned and its DNA sequence determined. trpA(UGA211) gave rise to two previously unidentified types of missense revertant. The first type was expected, namely trpA(CGA211), the result of a base substitution event. The other type, representing approximately 1% of the missense revertants, was unexpected on the basis of single base substitutions and an understanding of which amino acids are functional at alpha chain position 211. It was found to be the result of a 21 base-pair deletion of a region containing codon 211. The tryptophan-independent revertants of both position 234 nonsense mutants occurred at a frequency of approximately 2 per 10(9) viable cells. They were identical in that they both resulted from a 3 base-pair deletion, namely deletion of the chain-terminating codon at position 234. One of them, however, also displayed an A instead of the normal G in the third position of codon 235. The revertants were characterized according to growth in different media and tryptophan synthetase assays performed on crude extracts. These types of mutants should prove interesting and important for the elucidation of alpha chain structure-function relationships, for insight into the assembly and interaction of subunits in this model multienzyme complex, and for the study of mechanisms by which deletions can be generated.  相似文献   

16.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   

17.
Three u.v.-induced mutants of the purine-cytosine permease gene of Saccharomyces cerevisiae, with altered apparent Michaelis constant of transport (Kmapp), were cloned and sequenced. One of the mutants had extensive nucleotide replacement, whereas the other two had a single mutation. To evaluate the contribution of the different amino acid replacements to the phenotype of the complex mutant, simpler mutants were created by site-directed mutagenesis. All the amino acid replacements found in the segment from amino acids 371 to 377 inclusive, contribute to the determination of the phenotype. According to the model postulated this segment lies on the cell surface. In particular, amino acids at position 374 and 377 modulate the affinity of the permease towards its substrates. In the wild-type, when asparagine is present at both of these positions, the lowest Kmapp values are found.  相似文献   

18.
Summary An artificial gene encoding the Escherichia coli translational initiation factor IF1 was synthesized based on the primary structure (71 amino acid residues) of the protein. Codons for individual amino acids were selected on the basis of the preferred codon usage found in the structural genes for the initiation factor IF2 of E. coli and Bacillus stearothermophilus, both of which can be expressed at high levels in E. coli cells. We gave the IF1 gene a modular structure by introducing specific restriction enzyme sites into the sequence, resulting in units of three to ten codons. This was conceived to facilitate site-directed mutagenesis of the gene and thus to obtain IF1 with specific amino acid alterations at desired positions. The IF1 gene was assembled by shot-gun ligation of 9 synthetic oligodeoxyri-bonucleotides ranging in size from 31 to 65 nucleotides and cloned into an expression vector to place the gene under the control of an inducible promoter. Upon induction, E. coli cells harbouring the artificial gene were found to produce large amounts (60 mg/100 g cells) of a protein indistinguishable from natural IF1 in both chemecal and biological properties.  相似文献   

19.
Efficient selection procedures, using [3H]amino acids as the selecting agent, were developed for isolating temperature-sensitive (TS) mutations in CHO cells affecting protein synthesis. After chemical mutagenesis, leucyl-tRNA synthetase mutants were obtained when [3H]leucine was used as the selecting agent in two independent experiments. These mutations seem to involve the same genetic locus as the TSH1 mutant described previously (1). A selection with [3H]valine, in which all amino acids except leucine were at low concentration in the selective medium, resulted in a new class of mutants with reduced asparagyl-tRNA synthetase activity. These results were consistent with the finding that all mutants were phenotypically dependent on the concentration of amino acid, specific to the altered synthetase, in the medium. Our observations suggest that although leucyl synthetase mutations are a relatively common class of TS mutations in CHO cells, the spectrum of mutants obtained can be at least partially manipulated through concentrations of amino acids in selective media. The asparagyl-synthetase mutation was shown to be recessive and to complement the leucyl-synthetase mutation in cell-cell hybrids.  相似文献   

20.
A DNA fragment including most of the tyrA gene from E. coli B/r strain WU (Tyr-, Leu-) was amplified in vitro by polymerase chain reaction. The sequence was determined, first, for essentially all of the fragment to locate an ochre nonsense defect, and second, repeatedly for a region of the fragment from several independent isolates containing backmutations at the ochre codon (spontaneous and UV-induced). There were 20 single base differences in the tyrA gene region from the analogous wild-type E. coli K12 sequence: an ochre codon at amino acid position 161, 18 silent changes (1 at the first codon base and 17 at the third) and one replacement of valine by alanine. Different backmutations at the ochre codon encoded lysine, glutamine, glutamic acid, leucine, cysteine, phenylalanine, serine or tyrosine. The diversities of base substitutions at the ochre codon after UV mutagenesis or after mutagenesis where targeting by dimers was reduced or eliminated (after photoreversal of irradiated cells treated with nalidixic acid to induce SOS functions or after UV mutagenesis of cells containing amplified DNA photolyase) were similar (with two notable exceptions). The overall differences between the gene sequences for E. coli K12 or B/r seemed consistent with the neutral theory of molecular evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号