首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A highly sensitive and enantioselective method has been developed and validated for the determination of levocetirizine [(R)-cetirizine] in human plasma by normal-phase liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization (APCI) interface in the positive ion mode. Enantioselective separation was achieved on a CHIRALPAK AD-H column using an isocratic mobile phase consisting of a mixture of n-hexane, ethyl alcohol, diethylamine, and acetic acid (60:40:0.1:0.1, v/v/v/v). Levocetirizine-D(8) was used as an internal standard (IS). Levocetirizine and the IS were detected by multiple-reaction monitoring (MRM). Mass transitions of analyte and IS were m/z 389.2→201.1 and 397.2→201.1, respectively. Under optimized analytical conditions, a baseline separation of two enantiomers and IS was obtained in less than 11 min. Samples were prepared by a simple two-step extraction by protein precipitation using acetonitrile followed by liquid-liquid extraction with a n-hexane-dichloromethane mixture (50:50, v/v). The standard curve for levocetirizine was linear (r(2)>0.995) in the concentration range 0.5-300 ng/mL. Recovery was between 97.0 and 102.2% at low, medium, and high concentration. The limit of quantification (LOQ) was 0.5 ng/mL. Other method validation parameters, such as precision, accuracy, and stability, were very satisfactory. Finally, the proposed method was successfully applied to the study of enantioselective oral pharmacokinetics of levocetirizine in healthy Korean volunteers.  相似文献   

2.
Dexamethasone (DXM) is a synthetic glucocorticoid that is authorized for therapeutic use in veterinary medicine. The European Community (EC) fixed a maximum residue limit (MRL) at 2ng/g for liver, 0.75ng/g for muscle and kidney tissues, and 0.3ng/ml for milk, while its use as growth-promoter is completely banned. The purpose of this study was to develop and validate a simple and reliable method to determine DXM residues in bovine milk. Milk proteins were removed by the addition of concentrated trichloroacetic acid and paper filtration. Solid-phase extraction clean-up on a C18 reversed phase column was performed to obtain an extract suitable for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatographic separation of DXM and the internal standard desoximetasone, was achieved on a PLRP-S polymeric reversed phase column, using a mixture of 0.1% (v/v) acetic acid in water (mobile phase A) and acetonitrile (mobile phase B) as the mobile phases. They were identified using the MS/MS detection technique, and were subsequently quantified. The method has been validated according to the requirements of the EC at 0.15, 0.30 and 0.60ng/ml (being half the MRL, the MRL and double the MRL levels fixed by the EC). Calibration graphs were prepared in the 0.15-5ng/ml range and good linearity was achieved (r>or=0.99 and goodness of fit 相似文献   

3.
Miao F  Lu D  Li Y  Zeng M 《Analytical biochemistry》2006,352(2):176-181
After first being analyzed by HPLC, 4 free carotenoids, 15 astaxanthin monoesters, 12 astaxanthin diesters, and 3 astacin monoesters in Haematococcus pluvialis were identified by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)MS). Identification of each compound was based on the characteristic fragment ions of the positive ion mode, negative ion mode, and MS(2). Astaxanthin esters were identified based on the loss of one or two fatty acids. In a positive ion mode, astaxanthin monoesters had characteristic fragment ions at m/z 597 [M+H-fatty acid](+) and m/z 579 and 561 that resulted from a continuous loss of water. The relative intensity of m/z 579 in MS(2) amounted to more than 80% of that of the molecular ion. In astaxanthin diesters, the intensity of m/z 561 occasionally was equal to that of m/z 579, but in general the former, amounting to 50 to 60% or more of the molecular ion, was stronger than the latter, which decreased to 20 to 30% of the molecular ion. In addition, a set of compounds with maximum absorbance at 400 nm, detected by high-performance liquid chromatography-diode array detector (HPLC-DAD), had strong characteristic fragment ions at m/z 871 and 593 in the positive ion mode MS(2). They were presumed to be linolenic acid or an isomer of omega-6-gamma-linolenic acid esters of astacin.  相似文献   

4.
A high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS) method was established for the determination of gambogic acid (GA) in human plasma using ursolic acid as the internal standard (I.S.). Plasma samples were extracted with ethyl acetate and separated on a Hanbon Lichrospher 5-C18 column with a mobile phase of acetonitrile-tetrahydrofuran-water (70:23:7, v/v). Gambogic acid was determined by using atmospheric pressure chemical ionization (APCI) in a single quadrupole mass spectrometer. HPLC-APCI-MS was performed in the selected ion monitoring (SIM) mode using target ions at [M-H](-)m/z 627.4 for gambogic acid and [M-H](-)m/z 455.4 for the I.S. Calibration curve was linear over the range of 3.108-4144 microg/L. The lower limit of quantification was 3.108 microg/L. The intra- and inter-run precisions were less than 12.3 and 14.1%, respectively. The method has been successfully applied to study the pharmacokinetics of gambogic acid in patients with malignant tumour.  相似文献   

5.
A highly sensitive and selective method has been developed for the simultaneous quantification of 22R- and 22S-epimers of budesonide in human plasma. The drug was isolated from human plasma using C18 solid-phase extraction cartridges and was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives. Deuterium-labelled budesonide was synthesized and determined to have an isotopic purity > 99%. This was used as the internal standard. Epimers were quantified by automated liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, operating in selected ion mode at m/z 473.2 and m/z 476.2. Linear responses were observed for both epimers over the range 0.25 to 10.0 ng/ml. The average recoveries of 22R- and 22S-epimers of budesonide from human plasma were 87.4% and 87.0%, respectively. The lower limit of quantification for each epimer was 0.25 ng/ml, corresponding to 50.0 pg of analyte on column. Within- and between-day coefficients of variation were 8.6% and 4.0%, respectively.  相似文献   

6.
A simple and rapid quantitative method for 13C-labelled urea ([13C]urea) in human serum was developed by using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS). This method is used to establish and normalize the [13C]urea breath test, which is considered as an effective diagnostic method for Helicobacter pylori infection. HPLC-APCI-MS, involving a simple pretreatment process such as diluting serum with water, was shown to be able to discriminate the extrinsic [13C]urea from intrinsic urea present at high concentration in serum. In addition, a 13C nuclear magnetic resonance spectroscopic quantitative method for [13C]urea in human urine is also described. The precision and accuracy of measured concentrations in these two methods were found to be within the acceptable limit. An application of these methods to investigate the pharmacokinetic profile of orally administered [13C]urea in human serum and urine is also presented.  相似文献   

7.
A liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC-APCI-MS/MS) method for quantification of 10 amphetamine-related analytes in 1g meconium is presented. Specimen preparation included homogenization and solid-phase extraction. Two multiple reaction monitoring transitions were monitored per analyte. Ten and 1 microL injection volumes permitted quantification up to 10,000 ng/g, with sufficient sensitivity to quantify minor metabolites. Lower limits of quantification ranged from 1.25 to 40 ng/g. Precision was less than 14.2%, with accuracy between 79 and 115%. Meconium from a methamphetamine-exposed neonate was analyzed. Metabolites p-hydroxymethamphetamine, norephedrine and 4-hydroxy-3-methoxymethamphetamine were identified in meconium for the first time.  相似文献   

8.
We report here a validated method for the quantification of a new immunosuppressant drug, everolimus (SDZ RAD), using HPLC-tandem mass spectrometry. Whole blood samples (500 microl) were prepared by protein precipitation, followed by C(18) solid-phase extraction. Mass spectrometric detection was by selected reaction monitoring with an electrospray interface operating in positive ionization mode. The assay was linear from 0.5 to 100 microg/l (r(2) > 0.996, n = 9). The analytical recovery and inter-day imprecision, determined using whole blood quality control samples (n = 5) at 0.5, 1.2, 20.0, and 75.0 microg/l, was 100.3 - 105.4% and < or = 7.6%, respectively. The assay had a mean relative recovery of 94.8 +/- 3.8%. Extracted samples were stable for up to 24 h. Fortified everolimus blood samples were stable at -80 degrees C for at least 8 months and everolimus was found to be stable in blood when taken through at least three freeze-thaw cycles. The reported method provides accurate, precise and specific measurement of everolimus in blood over a wide analytical range and is currently supporting phase II and III clinical trials.  相似文献   

9.
Rapid resolution liquid chromatography/tandem multi-stage mass spectrometry (RRLC-MS(n)) and rapid resolution liquid chromatography/tandem mass spectrometry (RRLC/MS/MS) methods were developed for the identification and quantification of ergosterol and its metabolites from rat plasma, urine and faeces. Two metabolites (ERG1 and ERG2) were identified by RRLC/MS(n). The concentrations of the ergosterol were determined by RRLC/MS/MS. The separation was performed on an Agilent Zorbax SB-C18 with the mobile phase consisting of methanol and water (containing 0.1% formic acid). The detection was carried out by means of atmospheric pressure chemical ionization mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). Linear calibration curves were obtained in the concentration range of 7-2000, 6-2000 and 8-7500 ng/mL for plasma, urine and faecal homogenate, respectively. The intra- and inter-day precision values (RSD) were below 10%. The method was applied to the pharmacokinetic properties and elimination pathway of ergosterol in rats.  相似文献   

10.
In this study, we describe a simple liquid extraction (methanol/choloroform, 1:1, v/v) method for endogenous free cholesterol and administered sterols extracted from cultured Caco-2 cells. To quantify sterol contents in Caco-2 cells, a new HPLC-APCI-MS method was developed. All the sterols were baseline separated using reversed-phase column (C8, 2.1 mm x 150 mm, 3.5 microm) and isocratic conditions (90%, v/v, methanol-water mixture containing 0.2 mM ammonium acetate). The full scan mass spectra of sterols were measured by an ion trap mass spectrometer equipped with an APCI ion source. The intense fragment ions resulting from the loss of water [M+H-H2O]+ (m/z 369, 395, 397 and 399 for cholesterol, stigmasterol, sitosterol, and sitostanol, respectively) were used for determinations. The absolute extraction recovery of sterols from the spiked cell samples were 109.7+/-26.2, 105.7+/-5.1, 109.8+/-5.0 and 99.0+/-7.0% for cholesterol, stigmasterol, sitosterol, and sitostanol, respectively. Furthermore, no significant matrix effect was observed for the sterols in the cell samples. The sample assay was based on the internal standard method using stigmasterol as an internal standard. The method was linear over the concentration ranges of 0.45-9.0 microM (cholesterol) and 0.225-7.2 microM (sitosterol and sitostanol). The within- and between-day precision was less than 7% and accuracy ranged from 93.51 to 101.77%. The lowest limit of quantitation (LLOQ) was 0.225 microM for sitosterol and sitostanol, and 0.45 microM for cholesterol. The accuracy range was 95-106% and precision was lower than 9% for all LLOQ values.  相似文献   

11.
Phthalates are widely used as industrial solvents and plasticizers, with global use exceeding four million tons per year. We improved our previously developed high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric (HPLC-APCI-MS/MS) method to measure urinary phthalate metabolites by increasing the selectivity and the sensitivity by better resolving them from the solvent front, adding three more phthalate metabolites, monomethyl phthalate (mMP), mono-(2-ethyl-5-oxohexyl)phthalate (mEOHP) and mono-(2-ethyl-5-hydroxyhexyl)phthalate (mEHHP); increasing the sample throughput; and reducing the solvent usage. Furthermore, this improved method enabled us to analyze free un-conjugated mono-2-ethylhexyl phthalate (mEHP) by eliminating interferences derived from coelution of the glucuronide-bound, or conjugated form, of the mEHP on measurements of the free mEHP. This method for measuring phthalate metabolites in urine involves solid-phase extraction followed by reversed-phase HPLC-APCI-MS/MS using isotope dilution with (13)C(4) internal standards. We further evaluated the ruggedness and the reliability of the method by comparing measurements made by multiple analysts at different extraction settings on multiple instruments. We observed mMP, monoethyl phthalate (mEP), mono-n-butyl phthalate (mBP), monobenzyl phthalate (mBzP), mEHP, mEHHP and mEOHP in the majority of urine specimens analyzed with DEHP-metabolites mEHHP and mEOHP present in significantly higher amounts than mEHP.  相似文献   

12.
Hydroxy fatty acids from Euglena gracilis were identified by reverse-phase high performance liquid chromatography coupled to a mass spectrometer run in atmospheric pressure chemical ionization positive ion mode. These metabolites were converted to methyl esters to improve stability and chromatographic properties. A detection limit of 20 pg/microl per injection was determined for 5-HETE methyl ester based on the signal to noise ratio of the m/z 317 ion which corresponds to the loss of a hydroxyl group (M-17) and the major fragment in all HETE methyl esters studied. This is the first report for these metabolites in E. gracilis.  相似文献   

13.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry (LC-MS-MS) method is described for the determination of duloxetine in human plasma. Duloxetine was extracted from plasma using methanol and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 5mM ammonium acetate (45:55, v/v, pH 3.5) was delivered at a flow rate of 0.3 ml/min. Atmospheric pressure ionization (API) source was operated in positive ion mode. Multiple reaction monitoring (MRM) mode using the transitions of m/z 298.1-->m/z 44.0 and m/z 376.2-->m/z 123.2 were used to quantify duloxetine and internal standard (I.S.), respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml and the lower limit of quantitation (LLOQ) was 0.1 ng/ml. This method was successfully applied to pharmacokinetic study of a duloxetine formulation product after oral administration to healthy human subjects.  相似文献   

14.
The reaction of heparan sulfate (HS) and dermatan sulfate (DS) oligosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) yields hydrophobic derivatives that are amenable to separation by reversed-phase high-performance liquid chromatography (RP-HPLC) and analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). We describe here the development of an RP-HPLC-ESI-MS/MS assay for the measurement of di- to pentasaccharides derived from HS and DS in the urine of mucopolysaccharidosis (MPS) type II patients, as PMP derivatives. HPLC separation was performed on a 3-μm Alltima C18-LL column (50 × 2.1 mm) using a gradient elution of up to 25% acetonitrile over 17 min, and an API-4000 mass spectrometer equipped with a turbo-ion-spray source was used in the negative ion multiple reaction monitoring mode for PMP-oligosaccharide determination. Using this method, we found that the derivatization kinetics of the oligosaccharides was influenced by the type of residue present at the reducing end (i.e., N-acetylglucosamine, N-acetylgalactosamine, or uronic acid). The elevation of each of the measured oligosaccharides in MPS II urine enabled complete discrimination of a cohort of MPS II patient urines from unaffected controls. This assay is rapid and reproducible and may be useful for the diagnosis of MPS II, and also for monitoring of disease progression and efficacy of therapy.  相似文献   

15.
A rapid, sensitive and specific method was developed and validated using LC/MS/MS for determination of sunitinib in human plasma. Sample preparation involved a liquid-liquid extraction by the addition of 0.2mL of plasma with 4.0mL tert-butyl-methyl-ether extraction solution containing 25ng/mL of the internal standard clozapine. Separation of compounds was achieved on a C18 (50mmx2.1mm i.d., 3.5microm) analytical column using a mobile phase consisting of acetonitrile/H20 (65:35, v/v) containing 0.1% formic acid and isocratic flow at 0.150mL/min for 3min. The analytes were monitored by tandem-mass spectrometry with electrospray positive ionization. Linear calibration curves in human plasma were generated over the range of 0.2-500ng/mL with values for the coefficient of determination of >0.9950. Within- and between day precision and accuracy were < or =10%. The method was applied to the quantitation of sunitinib in plasma samples from a patient receiving daily oral therapy with sunitinib.  相似文献   

16.
This paper describes a simple, robust and cost-effective assay for the determination of ecabet in human plasma. After a simple step of protein precipitation using methanol, plasma samples were analyzed by reverse phase high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) with valsartan as the internal standard (I.S.). Ecabet and the I.S. valsartan were separated on a Venusil MP C18 analytical column using methanol-10mM ammonium acetate (75:25, v/v, pH 3.0) as mobile phase at a flow rate of 1.0 mL/min. Ecabet and I.S. were eluted at 0.91 and 0.92 min, respectively, ionized in negative mode, and then detected by multiple reaction monitoring (MRM) essay. The MRM transitions of m/z 379.1-->m/z 277.1 and m/z 434.3-->m/z 350.1 were used to quantify ecabet and I.S., respectively. The assay was linear over the concentration range of 10-6000 ng/mL and was successfully applied to a pharmacokinetic study in healthy volunteers.  相似文献   

17.
3-Hydroxy-beta,epsilon-carotene-3'-one (3'-oxolutein) is the major oxidative metabolite of dietary carotenoids in the retina of the human eye. Elucidating the biochemical mechanism of its formation may provide helpful insight into the pathogenesis of age-related macular degeneration; however, it is found in relatively low quantities that require highly sensitive methods for quantitation from individual retinas. Normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry allowed us to do quantitative analysis of 3'-oxolutein from central and peripheral retinas obtained from individual human donors. The limit of quantification for 3'-oxolutein in human retina at a signal-to-noise ratio of 10 was 6 pg. The precision of the assay yielded a coefficient of variation ranging from 4.7 to 7.4% and accuracies of 106-108%. A statistically significant (R = 0.99, p < or = 0.001) linear working range was achieved between 5 and 7200 pg. The 3'-oxolutein contents from 8-mm punches of the central macula and peripheral retina were found to be 375+/-192 and 191+/-95 pg/tissue, respectively.  相似文献   

18.
A simple, rapid and specific high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) has been developed and validated for the determination of ketoconazole in human plasma. The method used diethyl ether to extract the ketoconazole and the internal standard (I.S.) R51012 from alkalinized plasma sample. The LC separation was on a C(18) column (50 x 3 mm, 5 microm) using acetonitrile-water-formic acid (75:25:1, v/v/v) mobile phase. The retention times were approximately 1.8 min for both ketoconazole and the I.S. The MS-MS detection was by monitoring 531.2-->82.1 (m/z) for ketoconazole, and 733.5-->460.2 (m/z) for the I.S. The dynamic range was from 20.0 to 10000 ng/ml based on 0.1 ml plasma, with linear correlation coefficient of > or =0.9985. The run time was 2.5 min/injection. The recoveries of ketoconazole and the I.S. were 102 and 106%, respectively. The precision and accuracy of the control samples were with the relative standard deviations (RSDs) of < or =4.4% (n=6) and the relative errors (REs) from -0.6 to 1.4% for intra-day assay, and < or =8.6% RSD (n=18) and -1.4 to 0.9% RE for inter-day assay. The partial volume tests demonstrated good dilution integrity. Three freeze-thaw cycles, keeping plasma samples at ambient for 24 h, storing extracted samples at ambient for 24 h, and storing frozen plasma samples at approximately -20 degrees C for up to 2 months did not show substantial effects.  相似文献   

19.
A simple and reproducible high-performance liquid chromatography (HPLC) method was developed for determination of cyclosporine (CyA, also known as cyclosporin A) in human whole blood. The method entailed direct injection of the blood samples after deproteination using acetonitrile. Chromatography was carried out using an ODS column under isocratic elution with acetonitrile-5mM disodium hydrogen phosphate (75:25, v/v), pH 5.1 at 70 degrees C and a detector set at 210 nm. The mean absolute recovery of cyclosporine from blood was 97%, and the linearity was assessed in the range of 100-3000 ng/ml blood, with a correlation coefficient of greater than 0.999. The limit of quantification and detection of the present method were 100 and 50 ng/ml, respectively. This method has been used to analyze several hundred human blood samples for bioavailability studies.  相似文献   

20.
The measurement of N-acetylaspartic acid (NAA), N-acetylglutamic acid (NAG), and N-acetylaspartylglutamic acid (NAAG) in the whole brain of 3-mercaptopropionic acid (3-MPA)-treated rats has been developed using liquid chromatography-mass spectrometry with an atmospheric pressure ionization interface system. The recoveries of these compounds were 90.85 +/- 3.43% for NAA, 91.62 +/- 5.47% for NAG, and 92.29 +/- 4.44% for NAAG. The detection limits for NAA, NAG, and NAAG were 12, 15, and 20 microg/ml, respectively. After administration of 3-MPA, the concentrations of NAA, NAG, and NAAG in the whole brain over 10 min increased 177.25, 134.23, and 127.70%, respectively. These concentrations then decreased over the next 60 min. The simultaneous determination of NAA, NAG, and NAAG using this method was found to be very useful for studies of metabolism of NAA, NAG, and NAAG in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号