首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most large RNAs achieve their active, native structures only as complexes with one or more cofactor proteins. By varying the Mg(2+) concentration, the catalytic core of the bI5 group I intron RNA can be manipulated into one of three states, expanded, collapsed or native, or into balanced equilibria between these states. Under near-physiological conditions, the bI5 RNA folds rapidly to a collapsed but non-native state. Hydroxyl radical footprinting demonstrates that assembly with the CBP2 protein cofactor chases the RNA from the collapsed state to the native state. In contrast, CBP2 also binds to the RNA in the expanded state to form many non-native interactions. This structural picture is reinforced by functional splicing experiments showing that RNA in an expanded state forms a non-productive, kinetically trapped complex with CBP2. Thus, rapid folding to the collapsed state functions to self-chaperone bI5 RNA folding by preventing premature interaction with its protein cofactor. This productive, self-chaperoning role for RNA collapsed states may be especially important to avert misassembly of large multi-component RNA-protein machines in the cell.  相似文献   

2.
Buchmueller KL  Weeks KM 《Biochemistry》2003,42(47):13869-13878
Many large RNAs form conformationally collapsed, but non-native, states prior to folding to the native state or assembling with protein cofactors. Although RNA collapsed states play fundamental roles in RNA folding and ribonucleoprotein assembly processes, their structures have been poorly understood. We obtained 12 high-quality structural constraints for the collapsed state formed by the catalytic core of the bI5 intron RNA using site-specific cross-linking mediated by a short-lived reactant. RNA tertiary structures in the collapsed and native states are indistinguishable, even though only the native state forms a solvent-inaccessible core. Thus, structural neighbors in the collapsed state, including several long-range tertiary interactions, are approximately as close in space as in the native state, but RNA packing is sufficiently loose or dynamic to allow access by solvent. Binding by the obligate CBP2 protein cofactor has almost no effect on structural neighbors reported by cross-linking, even though protein binding chases the RNA from the collapsed state to the native state. Protein binding thus appears to promote only the final few angstroms of RNA folding rather than mediate global conformational rearrangements in the catalytic core. The bI5 RNA collapsed state functions to self-chaperone ribonucleoprotein assembly because this conformationally restrained structure lies very near that of the native state and excludes structures that otherwise misassemble efficiently.  相似文献   

3.
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.  相似文献   

4.
At physiological Mg2+ concentrations, the catalytic core of the bI5 group I intron does not fold into its native structure. In contrast, as judged by the global size, this RNA undergoes structural collapse at Mg 2+ concentrations much lower than required to drive folding of the RNA completely to the native state. The bI5 RNA therefore exists in equilibrium between expanded and collapsed non-native states. The activation energy of RNA folding from the collapsed state to the native state is negligible and the reaction is not accelerated by the addition of urea. This collapsed state is thus distinct from the kinetic traps observed during folding of other large RNAs. The collapsed non-native state forms readily in the case of bI5 RNA and may exist generically prior to assembly of other ribonucleoprotein holoenzymes, such as the ribosome.  相似文献   

5.
Native folding and splicing by the Saccharomyces cerevisiae mitochondrial bI5 group I intron RNA is facilitated by both the S. cerevisiae CBP2 and Neurospora crassa CYT-18 protein cofactors. Both protein-bI5 RNA complexes splice at similar rates, suggesting that the RNA active site structure is similar in both ribonucleoproteins. In contrast, the two proteins assemble with the bI5 RNA by distinct mechanisms and bind opposing, but partially overlapping, sides of the group I intron catalytic core. Assembly with CBP2 is limited by a slow, unimolecular RNA folding step characterized by a negligible activation enthalpy. We show that assembly with CYT-18 shows four distinctive features. (1) CYT-18 binds stably to the bI5 RNA at the diffusion controlled limit, but assembly to a catalytically active RNA structure is still limited by RNA folding, as visualized directly using time-resolved footprinting. (2) This mechanism of rapid stable protein binding followed by subsequent assembly steps has a distinctive kinetic signature: the apparent ratio of k(off) to k(on), determined in a partitioning experiment, differs from the equilibrium K(d) by a large factor. (3) Assembly with CYT-18 is characterized by a large activation enthalpy, consistent with a rate limiting conformational rearrangement. (4) Because assembly from the kinetically trapped state is faster at elevated temperature, we can identify conditions where CYT-18 accelerates (catalyzes) bI5 RNA folding relative to assembly with CBP2.  相似文献   

6.
The terminal intron (bI2) of the yeast mitochondrial cytochrome b gene is a group I intron capable of self-splicing in vitro at high concentrations of Mg2+. Excision of bI2 in vivo, however, requires a protein encoded by the nuclear gene CBP2. The CBP2 protein has been partially purified from wild-type yeast mitochondria and shown to promote splicing at physiological concentrations of Mg2+. The self-splicing and protein-dependent splicing reactions utilized a guanosine nucleoside cofactor, the hallmark of group I intron self-splicing reactions. Furthermore, mutations that abolished the autocatalytic activity of bI2 also blocked protein-dependent splicing. These results indicated that protein-dependent excision of bI2 is an RNA-catalyzed process involving the same two-step transesterification mechanism responsible for self-splicing of group I introns. We propose that the CBP2 protein binds to the bI2 precursor, thereby stabilizing the catalytically active structure of the RNA. The same or a similar RNA structure is probably induced by high concentrations of Mg2+ in the absence of protein. Binding of the CBP2 protein to the unspliced precursor was supported by the observation that the protein-dependent reaction was saturable by the wild-type precursor. Protein-dependent splicing was competitively inhibited by excised bI2 and by a splicing-defective precursor with a mutation in the 5' exon near the splice site but not by a splicing-defective precursor with a mutation in the core structure. Binding of the CBP2 protein to the precursor RNA had an effect on the 5' splice site helix, as evidenced by suppression of the interaction of an exogenous dinucleotide with the internal guide sequence.  相似文献   

7.
Most large ribozymes require protein cofactors in order to function efficiently. The yeast mitochondrial bI3 group I intron requires two proteins for efficient splicing, Mrs1 and the bI3 maturase. Mrs1 has evolved from DNA junction resolvases to function as an RNA cofactor for at least two group I introns; however, the RNA binding site and the mechanism by which Mrs1 facilitates splicing were unknown. Here we use high-throughput RNA structure analysis to show that Mrs1 binds a ubiquitous RNA tertiary structure motif, the GNRA tetraloop-receptor interaction, at two sites in the bI3 RNA. Mrs1 also interacts at similar tetraloop-receptor elements, as well as other structures, in the self-folding Azoarcus group I intron and in the RNase P enzyme. Thus, Mrs1 recognizes general features found in the tetraloop-receptor motif. Identification of the two Mrs1 binding sites now makes it possible to create a model of the complete six-component bI3 ribonucleoprotein. All protein cofactors bind at the periphery of the RNA such that every long-range RNA tertiary interaction is stabilized by protein binding, involving either Mrs1 or the bI3 maturase. This work emphasizes the strong evolutionary pressure to bolster RNA tertiary structure with RNA-binding interactions as seen in the ribosome, spliceosome, and other large RNA machines.  相似文献   

8.
The I-AniI maturase facilitates self-splicing of a mitochondrial group I intron in Aspergillus nidulans. Binding occurs in at least two steps: first, a specific but labile encounter complex rapidly forms and then this intermediate is slowly resolved into a native, catalytically active RNA/protein complex. Here we probe the structure of the RNA throughout the assembly pathway. Although inherently unstable, the intron core, when bound by I-AniI, undergoes rapid folding to a near-native state in the encounter complex. The next transition includes the slow destabilization and docking into the core of the peripheral stacked helix that contains the 5' splice site. Mutational analyses confirm that both transitions are important for native complex formation. We propose that protein-driven destabilization and docking of the peripheral stacked helix lead to subtle changes in the I-AniI binding site that facilitate native complex formation. These results support an allosteric-feedback mechanism of RNA-protein recognition in which proteins engaged in an intermediate complex can influence RNA structure far from their binding sites. The linkage of these changes to stable binding ensures that the protein and RNA do not get sequestered in nonfunctional complexes.  相似文献   

9.
Duncan CD  Weeks KM 《Biochemistry》2008,47(33):8504-8513
Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.  相似文献   

10.
The local environment at adenosine residues in the bI5 group I intron RNA was monitored as a function of Mg(2+) using both the traditional method of dimethyl sulfate (DMS) N1 methylation and a new approach, selective acylation of 2'-amine substituted nucleotides. These probes yield complementary structural information because N1 methylation reports accessibility at the base pairing face, whereas 2'-amine acylation scores overall residue flexibility. 2'-Amine acylation robustly detects RNA secondary structure and is sensitive to higher order interactions not monitored by DMS. Disruption of RNA structure due to the 2'-amine substitution is rare and can be compensated by stabilizing folding conditions. Peripheral helices that do not interact with other parts of the RNA are more stable than both base paired helices and tertiary interactions in the conserved catalytic core. The equilibrium state of the bI5 intron RNA, prior to assembly with its protein cofactor, thus features a relatively loosely packed core anchored by more stable external stem-loop structures. Adenosine residues in J4/5 and P9.0 form structures in which the nucleotide is constrained but the N1 position is accessible, consistent with pre-organization to form long-range interactions with the 5' and 3' splice sites.  相似文献   

11.
Multiple studies hypothesize that DEAD-box proteins facilitate folding of the ai5γ group II intron. However, these conclusions are generally inferred from splicing kinetics, and not from direct monitoring of DEAD-box protein-facilitated folding of the intron. Using native gel electrophoresis and dimethyl sulfate structural probing, we monitored Mss-116-facilitated folding of ai5γ intron ribozymes and a catalytically active self-splicing RNA containing full-length intron and short exons. We found that the protein directly stimulates folding of these RNAs by accelerating formation of the compact near-native state. This process occurs in an ATP-independent manner, although ATP is required for the protein turnover. As Mss 116 binds RNA nonspecifically, most binding events do not result in the formation of the compact state, and ATP is required for the protein to dissociate from such nonproductive complexes and rebind the unfolded RNA. Results obtained from experiments at different concentrations of magnesium ions suggest that Mss 116 stimulates folding of ai5γ ribozymes by promoting the formation of unstable folding intermediates, which is then followed by a cascade of folding events resulting in the formation of the compact near-native state. Dimethyl sulfate probing results suggest that the compact state formed in the presence of the protein is identical to the near-native state formed more slowly in its absence. Our results also indicate that Mss 116 does not stabilize the native state of the ribozyme, but that such stabilization results from binding of attached exons.  相似文献   

12.
Typical RNA-based cellular catalysts achieve their active structures only as complexes with protein cofactors, implying that protein binding compensates for some structural deficiencies in the RNA. An unresolved question was the extent to which protein-facilitation imposes additional structural costs, by requiring that an RNA maintain structures required for protein binding, beyond those required for catalysis. We used nucleotide analog interference to identify initially 71 functional group substitutions at phosphate, 2'-ribose, and adenosine base positions that compromise RNA self-splicing in the bI5 group I intron. Protein-facilitated splicing by CBP2 suppresses 11 of 30 interfering substitutions at the RNA backbone and a greater fraction, 27 of 41, at the adenosine base, including at structures conserved among group I introns. Only one substitution directly interferes with protein binding but not with self-splicing. This substitution, plus three adenosine base modifications that interfere more strongly in CBP2-dependent splicing than in self-splicing, yield a cost for protein facilitation of only four functional groups, as approximated by this set of analogs. The small observed structural cost provides a strong physical rationale for the evolutionary drive from RNA to RNP-based function in biology. Remarkably, the four extra requirements do not appear to report disruption of direct protein-RNA contacts and instead likely reflect design against misfolding rather than for maintenance of a protein-binding site.  相似文献   

13.
Bassi GS  Weeks KM 《Biochemistry》2003,42(33):9980-9988
The yeast mitochondrial bI3 group I intron RNA splices in vitro as a six-component ribonucleoprotein complex with the bI3 maturase and Mrs1 proteins. We report a comprehensive framework for assembly of the catalytically active bI3 ribonucleoprotein. (1) In the absence of Mg(2+), two Mrs1 dimers bind independently to the bI3 RNA. The ratio of dissociation to association rate constants, k(off)/k(on), is approximately equal to the observed equilibrium K(1/2) of 0.12 nM. (2) At magnesium ion concentrations optimal for splicing (20 mM), two Mrs1 dimers bind with strong cooperativity to the bI3 RNA. k(off)/k(on) is 15-fold lower than the observed K(1/2) of 11 nM, which reflects formation of an obligate intermediate involving one Mrs1 dimer and the RNA in cooperative assembly of the Mrs1-RNA complex. (3) The bI3 maturase monomer binds to the bI3 RNA at almost the diffusion-controlled limit and dissociates with a half-life of 1 h. k(off)/k(on) is approximately equal to the equilibrium K(D) of 2.8 pM. The bI3 maturase thus represents a rare example of a group I intron protein cofactor whose binding is adequately characterized by a one-step mechanism under conditions that promote splicing. (4) Maturase and Mrs1 proteins each bind the bI3 RNA tightly, but with only modest coupling (approximately 1 kcal/mol), suggesting that the proteins interact at independent RNA binding sites. Maturase binding functions to slow dissociation of Mrs1; whereas prior Mrs1 binding increases the bI3 maturase k(on) right to the diffusion limit. (5) At effective concentrations plausibly present in yeast mitochondria, a predominant assembly pathway emerges involving rapid, tight binding by the bI3 maturase, followed by slower, cooperative assembly of two Mrs1 dimers. In the absence of other factors, disassembly of all protein subunits will occur in a single apparent step, governed by dissociation of the bI3 maturase.  相似文献   

14.
The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing the functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally similar misfolded conformation that has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (EΔP5abc). Here, we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of EΔP5abc toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, similar to P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by dimethyl sulfate footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structural features, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native contacts as they form. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in RNA folding kinetics.  相似文献   

15.
We describe an affinity chromatography method to isolate specific RNAs and RNA-protein complexes formed in vivo or in vitro. It exploits the highly selective binding of the coat protein of bacteriophage R17 to a short hairpin in its genomic RNA. RNA containing that hairpin binds to coat protein that has been covalently bound to a solid support. Bound RNA-protein complexes can be eluted with excess R17 recognition sites. Using purified RNA, we demonstrate that binding to immobilized coat protein is highly specific and enables one to separate an RNA of interest from a large excess of other RNAs in a single step. Surprisingly, binding of an RNA containing non-R17 sequences to the support requires two recognition sites in tandem; a single site is insufficient. We determine optimal conditions for purification of specific RNAs by comparing specific binding (retention of RNAs with recognition sites) to non-specific binding (retention of RNAs without recognition sites) over a range of experimental conditions. These results suggest that binding of immobilized coat protein to RNAs containing two sites is cooperative. We illustrate the potential utility of the approach in purifying RNA-protein complexes by demonstrating that a U1 snRNP formed in vivo on an RNA containing tandem recognition sites is selectively retained by the coat protein support.  相似文献   

16.
G W Witherell  H N Wu  O C Uhlenbeck 《Biochemistry》1990,29(50):11051-11057
The binding of the R17 coat protein to synthetic RNAs containing one or two coat protein binding sites was characterized by using nitrocellulose filter and gel-retention assays. RNAs with two available sites bound coat protein in a cooperative manner, resulting in a higher affinity and reduced sensitivity to pH, ionic strength, and temperature when compared with RNAs containing only a single site. The cooperativity can contribute up to -5 kcal/mol to the overall binding affinity with the greatest cooperativity found at low pH, high ionic strength, and high temperatures. Similar solution properties for the encapsidation of the related fr and f2 phage suggest that the cooperativity is due to favorable interactions between the two coat proteins bound to the RNA. This system therefore resembles an intermediate state of phage assembly. No cooperative binding was observed for RNAs containing a single site and a 5' or 3' extension of nonspecific sequence, indicating that R17 coat protein has a very low nonspecific binding affinity. Unexpectedly weak binding was observed for several RNAs due to the presence of alternative conformational states of the RNA.  相似文献   

17.
Previously we described an in vitro selection variant abbreviated SERF (in vitro selection from random rRNA fragments) that identifies protein binding sites within large RNAs. With this method, a small rRNA fragment derived from the 23S rRNA was isolated that binds simultaneously and independently the ribosomal proteins L4 and L24 from Escherichia coli. Until now the rRNA structure within the ternary complex L24-rRNA-L4 could not be studied due to the lack of an appropriate experimental strategy. Here we tackle the issue by separating the various complexes via native gel-electrophoresis and analyzing the rRNA structure by in-gel iodine cleavage of phosphorothioated RNA. The results demonstrate that during the transition from either the L4 or L24 binary complex to the ternary complex the structure of the rRNA fragment changes significantly. The identified protein binding sites are in excellent agreement with the recently reported crystal structure of the 50S subunit. Because both proteins play a prominent role in early assembly of the large subunit, the results suggest that the identified rRNA fragment is a key element for the folding of the 23S RNA during early assembly. The introduced in-gel cleavage method should be useful when an RNA structure within mixed populations of different but related complexes should be studied.  相似文献   

18.
19.
The ai5γ group II intron requires a protein cofactor to facilitate native folding in the cell. Yeast protein Mss116 greatly accelerates intron folding under near-physiological conditions both in vivo and in vitro. Although the effect of Mss116 on the kinetics of ai5γ ribozyme folding and catalysis has been extensively studied, the precise structural role and interaction sites of Mss116 have been elusive. Using Nucleotide Analog Interference Mapping to study the folding of splicing precursor constructs, we have identified specific intron functional groups that participate in Mss116-facilitated folding and we have determined their role in the folding mechanism. The data indicate that Mss116 stabilizes an early, obligate folding intermediate within intron domain 1, thereby laying the foundation for productive folding to the native state. In addition, the data reveal an important role for the IBS2 exon sequence and for the terminus of domain 6, during the folding of self-splicing group IIB intron constructs.  相似文献   

20.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号