首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Questions

Do livestock grazing and seasonal precipitation structure species composition in montane vernal pools? Which grazing and precipitation variables best predict cover of vernal pool specialists and species with broader habitat requirements? Is vernal pool species diversity correlated with livestock exclosure, and at what spatial scales?

Location

Montane vernal pools, northeast California, USA.

Methods

Vegetation was sampled in 20 vernal pools, including pools where livestock had been excluded for up to 20 years We compared plant species composition, functional group composition and species diversity among sites that varied in grazing history and seasonal precipitation using CCA and LMM.

Results

Although vernal pool specialists were dominant in montane vernal pools, over a third of plant cover was comprised of species that occur over a broad range of wetland or upland environments. The species composition of vernal pool plant communities was influenced by both livestock grazing and precipitation patterns, however the relative effects of these environmental variables differed by functional group. Livestock exclosures favoured perennial vernal pool specialists over annual vernal pool specialists. In contrast, the cover of habitat generalists was more strongly influenced by seasonal precipitation than livestock grazing. At small spatial scales, species richness and diversity decreased as the number of years a pool had been fenced increased, but this relationship was not significant at a larger spatial scale.

Conclusions

Both livestock grazing and seasonal precipitation structure the montane vernal pool plant community. We found that livestock grazing promotes the cover of annual vernal pool specialists, but at the expense of perennial vernal pool specialists. Wetter vernal pools, however, support higher cover of wetland generalist species regardless of whether pools are grazed.  相似文献   

2.
The fact that several vernal pool restoration and creation attempts in eastern Pennsylvania and New Jersey have been paired with conservation of natural pools in the same area provided a valuable research opportunity to compare amphibian habitat quality between project sites and natural reference pools. To measure desired outcomes, we used successful reproduction and metamorphosis of two vernal pool indicator species, the wood frog and spotted salamander. Although many previous studies indicate that restored and created pools rarely replace function lost in the destruction of natural pools, success of vernal pool indicator species was not necessarily related to pool type in this study. Results indicate a strong correlation between reproductive success for both species and vernal pool size (i.e. mean depth and volume), regardless of pool type. Although overall survival rates of wood frog larvae were significantly higher in natural pools with hydroperiods between 12 and 35 weeks, wood frogs were also successful in one restored and one created vernal pool. Salamander survival rates were highest in two natural and two created pools, which had in common both greater volumes and higher proportions of forest land cover in the surrounding 1,000 m. The documented success of vernal pool indicator species in two well‐established created pools demonstrates that pool creation can sometimes restore communities and ecological functions lost, especially when nearby natural pools are degraded or destroyed.  相似文献   

3.
California's Mediterranean ecosystems include shrubland and grassland vegetation types that are fire-prone. Dotted within this landscape are ephemeral wetlands called vernal pools. Since surrounding upland vegetation is adapted to survive fire, it is expected that vernal pool organisms should be able to survive as well. One group of animals common to vernal pools are anostracan crustaceans that survive the pool's dry period as encysted embryos. We hydrated anostracan cysts from the soil of a recently burned pool and from soil samples intentionally burned in a prescribed fire. We also sampled burned pools when refilled the next rainy season. We found that anostracan cysts in the soil can survive fire and that shrimp occur in pools in the first post-burn season. This information is important from a management perspective concerning fire effects, controlled or natural, on vernal pools and their rare and endangered species. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The loss of freshwater wetlands worldwide has underscored the importance of restoration to enhance biodiversity and functional objectives. While aquatic invertebrate communities within restored perennial freshwaters are well studied, few studies have occurred in the greatly reduced habitat of seasonal wetlands, such as vernal pools. California vernal pools have experienced high habitat loss and support many threatened or endangered invertebrate species. We compared 90 natural and 90 restored vernal pools of different ages across 10 sites throughout California and Southern Oregon using the Sars' method. Large branchiopod abundance, total invertebrate abundance, class richness, and community composition were assessed between pool types (natural vs. restored) and along environmental gradients (e.g. site, pool depth, surface area, age since restoration). Large branchiopod and total invertebrate abundance were 215 and 274% higher in natural pools than restored pools, but class richness was not different. Community composition was significantly different and driven by greater abundances of vernal pool fairy shrimp, San Diego fairy shrimp, Ostracoda, Cladocera, and Copepoda in natural pools. Few environmental or habitat variables explained patterns in richness or abundance. Our work demonstrates that restored pools, even those decades old, are different than natural pools. Future mitigation and monitoring guidelines for restored vernal pools should include quantitative evaluations for aquatic invertebrates. Restored pools are not adequate compensation for lost natural pools because they do not have the same ecological functions and values.  相似文献   

5.
The importance of assessing spatial data at multiple scales when modelling species–environment relationships has been highlighted by several empirical studies. However, no landscape genetics studies have optimized landscape resistance surfaces by evaluating relevant spatial predictors at multiple spatial scales. Here, we model multiscale/layer landscape resistance surfaces to estimate resistance to inferred gene flow for two vernal pool breeding salamander species, spotted (Ambystoma maculatum) and marbled (A. opacum) salamanders. Multiscale resistance surface models outperformed spatial layers modelled at their original spatial scale. A resistance surface with forest land cover at a 500‐m Gaussian kernel bandwidth and normalized vegetation index at a 100‐m Gaussian kernel bandwidth was the top optimized resistance surface for A. maculatum, while a resistance surface with traffic rate and topographic curvature, both at a 500‐m Gaussian kernel bandwidth, was the top optimized resistance surface for A. opacum. Species‐specific resistant kernels were fit at all vernal pools in our study area with the optimized multiscale/layer resistance surface controlling kernel spread. Vernal pools were then evaluated and scored based on surrounding upland habitat (local score) and connectivity with other vernal pools on the landscape, with resistant kernels driving vernal pool connectivity scores. As expected, vernal pools that scored highest were in areas within forested habitats and with high vernal pool densities and low species‐specific landscape resistance. Our findings highlight the success of using a novel analytical approach in a multiscale framework with applications beyond vernal pool amphibian conservation.  相似文献   

6.
Conservation practitioners widely agree that optimal conservation strategies will maximize the amount of genetic variation preserved in target taxa, but there is ongoing debate about how that variation should be distributed through restoration and mitigation activities. Here, we evaluate the impacts of ~10 years of mitigation on the population genetic structure of Limnanthes vinculans, a state- and federally-listed endangered plant species restricted to ephemeral vernal pool wetlands in the Santa Rosa Plain of California. Using microsatellite loci to estimate patterns of neutral molecular variation, we found that created pools support similar levels of variation in L. vinculans as natural pools. Habitat creation and seed translocation have not disrupted the largest-scale patterns of population structure across the species range, but a concentration of mitigation activity towards the range center has reduced the extent of isolation-by-distance operating in this region and shifted the location of at least one genetic boundary. Patterns of genetic variation among populations in remnant vernal pools reveal that gene flow has historically occurred beyond the scale of individual pools at the center of the species range, while small genetic populations have differentiated around the range margins. On average, L. vinculans in created pools exhibit less cover and more restricted local distributions than those in remnant pools, but these patterns were driven by two particularly productive natural sites rather than consistent differences between natural and created sites. We conclude that mitigation activities have changed the historical patterns of gene flow within the species range to a moderate degree, that these changes will likely impact remnant pools through gene flow, and that current created sites provide less heterogeneous habitat for L. vinculans than do natural pools. Studies that track individual plants will be needed to determine if the changes in gene flow due to mitigation will have positive or negative impacts on the demographic and microevolutionary trajectories of L. vinculans. More generally, this study provides a retrospective analysis of the outcome of managing an endangered plant species through intensive mitigation, and yields several insights to inform future conservation strategies.  相似文献   

7.
Ecological restoration provides a means to increase biodiversity in ecosystems degraded by natural and human‐induced changes. In some systems, disturbances such as grazing can be key factors in the successful restoration of biodiversity and ecological function, but few studies have addressed this experimentally, especially over long time periods and at landscape scales. In this study, we excluded livestock grazing from plots within a grassland landscape containing vernal pools in the Central Valley of California for 10 years and compared vernal pool hydrology and plant community composition with areas grazed under an historic regime. In all 10 years, the relative cover of native plant species remained between 5 and 20% higher in the grazed versus ungrazed plots. This effect was particularly prominent on the pool edges, though evidence of invasion into the pool basins was evident later in the study. Native species richness was lower in the ungrazed plots with 10–20% fewer native species found in ungrazed versus grazed plots in all years except the first year of treatment. Ungrazed pools held water for a shorter period of time than pools grazed under an historic regime. By the ninth year of the study, ungrazed pools took up to 2 weeks longer to fill and dried down 1–2 weeks sooner at the end of the rainy season compared to grazed pools. The results of this study confirm that livestock grazing plays a key role in maintaining biodiversity and ecosystem function in vernal pools.  相似文献   

8.
Successful restoration of ephemeral wetlands worldwide is particularly challenging, given the often‐precise relationship between hydrological features and plant community dynamics. Using a long‐term experiment in vernal pool restoration, we compare hydrological and vegetative characteristics of constructed pools with those of adjacent, naturally occurring reference pools. Although constructed and reference pools were similar in maximum water depth and duration of inundation at the beginning of our experiment in 2000, constructed pools were shallower and inundated for shorter periods by 2009. Native vernal pool species were able to establish populations in many constructed pools, and seeding sped their establishment. Comparing seeded plots in constructed pools with unseeded plots in reference pools, we found no significant difference in the cover of seeded species, native species, or exotic species in most years. In recent years, however, native species have declined in both constructed and reference pools. Finally, the cover of native vernal pool species was positively and non‐linearly associated with both water depth and seeding treatment. We conclude that the establishment of appropriate hydrological conditions was necessary, but not sufficient to promote successful performance of vernal pool species in constructed pools. Constructed pools with hydrologic conditions similar to those of reference pools were more likely to support populations of native vernal pool plant species, but only seeded pools were similar to reference pools in abundance of native cover. Most importantly, hydrological conditions in experimental pools have worsened since their construction, which may hamper persistence of native species in this restoration effort.  相似文献   

9.
E. T. BAUDER 《Freshwater Biology》2005,50(12):2129-2135
1. Vernal pools are small precipitation‐fed temporary wetlands once common in California. They are known for their numerous narrowly endemic plant and animal species, many of which are endangered. These pools experience the typical wet season/dry season regime of Mediterranean climates. Their hydrological characteristics are determined by a complex interaction between the highly variable climate and topographic relief. 2. Hypotheses regarding the effects on ponding of total precipitation, storm intensity and pattern were examined using long‐term weather records combined with two decades of data on the length and depth of inundation in 10 individual pools. Similarly, data on pool landscape position and microtopography allowed examination of the interactions between topography and rainfall amount and pattern. 3. The total amount of precipitation and length of inundation were strongly correlated. Landscape position affected ponding duration, with collector pools holding water longer than headwater pools. Basin microtopography interacted with climatic variability to determine the nature and extent of within‐basin microhabitats sufficiently different in hydrological and/or soil conditions to support or exclude individual species. The effect on hydroperiod of precipitation concentrated in a few months rather than spread more evenly over the season depended on total precipitation. 4. Changes in climate, the mound‐and‐depression landscape or pool microtopography could have profound impacts on the hydrology of individual pools as well as the array of hydrological conditions in the system. Given the individualistic responses of the numerous endemic species supported by vernal pools, any of these environmental changes could diminish their sustainability and increase the risk of species extinction. Conservation, restoration and management decisions should take these factors into account.  相似文献   

10.
11.
12.
In California, much of the remaining vernal pool habitat is used for cattle grazing. Some studies suggest that grazing helps promote native plant diversity on grasslands, but the impact of grazing on plants that reside in pool basins is largely unknown. We investigated how one aspect of cattle grazing, the deposition of waste, affects these plant species by adding dung and urine to mesocosms lined with vernal pool soil. As a result of dung input, orthophosphate, conductivity, and turbidity increased in our mesocosms while dissolved oxygen decreased. Such changes in water quality are consistent with a shift toward a eutrophic state. Algal biomass and percent-cover also increased in dung-treated mesocosms. When the mesocosms dried, vascular plant species richness and percent-cover in dung-treated mesocosms were reduced by up to 54% and 87%, respectively. We attribute this to light attenuation by algal mats that flourished in the nutrient-enriched water. We also found that dung input caused significant, but weak, shifts in the composition of the vascular plant community. We conclude that cattle grazing may be detrimental to plant communities in vernal pools via increased nutrient loading, which promotes algal growth. Any beneficial effects of grazing may thus be limited to the surrounding grassland. Studies that examine the regional-scale impacts of grazing on vernal pool grasslands should separately consider the impacts to local-scale (i.e., within-pool) plant diversity, as most of the threatened and endangered plant species of California vernal pools reside primarily in pool basins.  相似文献   

13.
14.
Ephemeral ponded wetlands, often referred to as vernal pools in the wetland’s lexicon of the northeastern United States, are in need of protection from outright loss, catastrophic alteration, and disruption of natural processes in the surrounding landscape, because of their great importance to a characteristic wildlife fauna. The state of Massachusetts, USA provides a useful model for vernal pool protection. Vernal pools have been specifically protected under state wetlands regulations since 1987 and many of the state’s municipalities have added additional, more stringent protection under local wetland bylaws. Some vernal pools are also protected under federal wetlands protection law. The protection of vernal pools in Massachusetts is based on a certification process in which biological data are collected to demonstrate that a wetland provides vernal pool functions. Once certified, and if a pool meets jurisdictional requirements, regulatory restrictions are placed on development and other activities proposed within the pool. The regulatory protection for vernal pools in Massachusetts has resulted in the prevention of outright loss and degradation of many vernal pools across the state. However, a 2001 US Supreme Court decision, referred to as the SWANCC decision, may result in a loss of federal jurisdiction over many vernal pools, protection that is especially valuable for pools that do not meet state regulatory criteria. Of significant importance is a lack of protection in existing regulations of the upland non-breeding habitat surrounding vernal pools, which has been shown to be of critical importance to the animals that rely on the pools. Despite the shortcomings of the regulatory protection model in Massachusetts, it has been especially effective as a catalyst for environmental and wildlife awareness, public participation in the wetlands regulatory process, and as an extremely valuable tool in environmental education and outreach.  相似文献   

15.
Restoration of habitat for endangered species often involves translocation of seeds or individuals from source populations to an area targeted for revegetation. Long-term persistence of a species is dependent on the maintenance of sufficient genetic variation within and among populations. Thus, knowledge and maintenance of genetic variability within rare or endangered species is essential for developing effective conservation and restoration strategies. Genetic monitoring of both natural and restored populations can provide an assessment of restoration protocol success in establishing populations that maintain levels of genetic diversity similar to those in natural populations. California’s vernal pools are home to many endangered plants, thus conservation and restoration are large components of their management. Lasthenia conjugens (Asteraceae) is a federally endangered self-incompatible vernal pool annual with gravity- dispersed seeds. Using the molecular technique of intersimple sequence repeats (ISSRs), this study assessed levels and patterns of genetic variability present within natural and restored populations of L. conjugens. At Travis Air Force Base near Fairfield, California, a vernal pool restoration project is underway. Genetic success of the ecologically based seeding protocol was examined through genetic monitoring of natural and restored populations over a three-year period. Genetic diversity remained constant across the three sampled generations. Diversity was also widely distributed across all populations. We conclude that the protocol used to establish restored populations was successful in capturing similar levels and patterns of genetic diversity to those seen within natural pools. This study also demonstrates how genetic markers can be used to inform conservation and restoration decisions.  相似文献   

16.
This study compared the hydrology, physiochemistry, and amphibian biomass between a complex of created vernal pools and a complex of natural vernal pools in 2007 in central Ohio, United States. Hydrologic connectivity of surface water and groundwater differed between the natural and the created pool complexes. Surface inundation duration for created pools exceeded that of natural pools, although spring water depths were similar. Dissolved oxygen (p= 0.05) and hourly temperature (p= 0.00) were 1.2% and 1.1% higher, respectively, in the created pools, and conductivity was 1.5% higher (p= 0.00) in the natural pools. Amphibian dip net results found no significant difference in biomass between natural and created pools or family (hylid, ranid, and ambystomatid) biomass in both pool types. Amphibian families were evenly represented by both capture methods in the created wetlands; however, the distribution of families was not even in natural pools and the proportion of ranids was four times greater for samples obtained by funnel traps than dip netting. Eleven years after construction, the created vernal pools did not mimic natural pools in surface inundation and groundwater–surface water exchange, dissolved oxygen, and water temperature. The created pools are perched wetlands and are never likely to mimic reference pool hydrology. Dissolved oxygen and temperature differences are likely due to the separation of surface water and groundwater in the created pools. However, the created pools exhibited a higher taxa diversity than the natural pools due to a more even distribution of organisms between the three families.  相似文献   

17.
Accurately mapping, modeling, and managing the diversity of wetlands present in estuaries often relies on habitat classification systems that consistently identify differences in biotic structure or other ecosystem characteristics between classes. We used field data from four Oregon estuaries to test for differences in vegetation structure and edaphic characteristics among three tidal emergent marsh classes derived from National Wetlands Inventory (NWI) data: low estuarine marsh, high estuarine marsh, and tidal palustrine marsh. Independently of NWI class, we also evaluated the number and types of plant assemblages present and how edaphic variables, non-native plant cover, and plant species richness varied among them. Pore water salinity varied most strongly across marsh classes, with sediment carbon and nitrogen content, grain size and marsh surface elevation showing smaller differences. Cover of common vascular plant species differed between marsh classes and overall vegetation composition was somewhat distinct among marsh types. High estuarine marsh had the largest species pools. However, plot-level plant diversity was similar among marsh classes. Non-native species cover was highest in tidal palustrine and high estuarine marshes. The marshes in the study contained a large number of plant assemblages with most occurring across more than one marsh class. The more common assemblages occurred along a continuum of tidal elevation, soil salinity, and edaphic characteristics, with varying plant richness and non-native cover. Our data suggest that NWI classes are useful for differentiating several general features of Oregon tidal marsh structure, but that more detailed information on plant assemblages found within those wetland classes would allow more precise characterization of additional wetland features such as edaphic conditions and plant diversity.  相似文献   

18.
Concerns about the impact of species diversity loss has heightened the importance of determining what limits local diversity and the relative roles of the available species pool and local interactions. Recent theory suggests that local diversity may exhibit linear or asymptotic responses to regional variation in species pools depending resource supply rates. We tested this idea by augmenting species pools in three sites along a natural productivity gradient (a surrogate for resource supply) in a mid-successional old-field. Augmentation of the species pool, enhanced local diversity more at medium than low productivity sites in this field and seed addition had no effect at high productivity, suggesting that diversity was saturated in high resource areas of this field. These results suggest that resource supply rates may mediate species pool-richness relationships. Species additions into cleared plots demonstrated that the observed differences in species recruitment along this gradient were largely driven by abiotic filtering at low and competitive filtering at high productivity. Furthermore, we observed that augmentation of the species pool shifted the productivity–diversity relationship from a negative linear to unimodal suggesting that species pools may influence reported productivity–diversity patterns.  相似文献   

19.
Quantifying spatial and temporal heterogeneity in ecosystem processes presents a challenge for conserving ecosystem function across landscapes. In particular, many ecosystems contain small features that play larger roles in ecosystem processes than their size would indicate; thus, they may represent “hotspots” of activity relative to their surroundings. Biogeochemical hotspots are characterized as small features within a landscape that show comparatively high chemical reaction rates. In northeastern forests in North America, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of summer. Ephemeral flooding alters soil moisture and the depth of the soil’s oxic/anoxic boundary, which may affect biogeochemical processes. We studied the effects of vernal pools on leaf-litter decomposition rates, soil enzyme activity, and denitrification in vernal pools to assess whether they function as biogeochemical hotspots. Our results indicate that seasonal inundation enhanced leaf-litter decomposition, denitrification, and enzyme activity in vernal pools relative to adjacent forest sites. Leaves in seasonally flooded areas decomposed faster than leaves in terra firme forest sites. Flooding also influenced the C, N, and P stoichiometry of decomposing leaf litter and explained the variance in microbial extracellular enzyme activity for phosphatase, β-d-glucosidase, and β-N-acetylglucosaminidase. Additionally, denitrification rates were enhanced by seasonal flooding across all of the study pools. Collectively, these data suggest that vernal pool ecosystems may function as hotspots of leaf-litter decomposition and denitrification and play a significant role in decomposition and nutrient dynamics relative to their size.  相似文献   

20.
Although many restoration projects now include monitoring and evaluation in an adaptive management approach, a failure to employ distinct performance standards can lead to inconsistent and unclear results that may hinder learning from project outcomes and complicate large‐scale assessments of restoration success. Such is the case with vernal pool restoration projects in California, where performance standard guidelines are vague and inconsistently applied across agencies implementing restoration projects. However, positive steps have been made in recent years to develop wetland functional assessments and monitoring protocols in California to reduce inconsistencies and promote ecologically meaningful restoration. Additional work is needed to develop specific guidelines for vernal pool restoration performance standards and define their role within an adaptive management framework. We provide a case study of a vernal pool restoration project in central California to illustrate some of the challenges in using currently available vernal pool performance standard guidelines and propose suggestions for increasing their ecological relevance and clarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号