首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

2.
Singly end-labeled DNA fragments containing the lactose operator were methylated in the presence of the lactose repressor and homogeneous preparations of its proteolytic fragments. Binding of core protein produced by mild trypsin digestion yielded a methylation perturbation pattern that differed significantly from that elicited by binding to intact repressor, although similarities in the patterns for these related proteins were noted in the central, asymmetric region of the operator. An NH2-terminal peptide (residues 1 to 56) from lac repressor bound operator fragments in a nitrocellulose filter assay, but failed to perturb DNA methylation significantly relative to the pattern in the absence of peptide. Binding of hybrid tetramers of core and intact repressor monomers produced related but unique methylation patterns for the purines on the operator fragment. The general pattern of perturbation observed suggests preferred binding of a single NH2 terminus to the promoter-distal region of the operator and asymmetric interaction of the core region with the operator sequence. Differences in purine methylation patterns produced by the presence of effector complexes of repressor and core protein suggest the possible nature of changes in protein topology that result in the affinity changes accompanying induction.  相似文献   

3.
Biosynthesis of a repressor/nuclease hybrid protein   总被引:3,自引:0,他引:3  
The phage T7 endonuclease gene was fused to the 3' end of the lac repressor gene. The hybrid protein exhibits repressor and nuclease functions in a manner dependent on the conformation of the DNA. With supercoiled DNA, nuclease activity is directed to the major cruciform, whereas with linear DNA, the enzyme cleaves preferentially restriction fragments carrying the operator. These properties render the hybrid protein a unique probe of DNA conformation in vitro and in vivo.  相似文献   

4.
C P Bahl  R Wu  S Narang 《Gene》1978,3(2):123-134
A 17-nucleotide-long synthetic DNA molecule constituting the minimal recognition sequence of the lactose operator has been cloned in E. coli using the vehicle pBR313 and a synthetic HindIII adaptor. The clones containing the lac-pBR313 hybrid DNA constitutively produced beta-galactosidase. The level of beta-galactosidase was high and comparable to that obtained in cells carrying a 21-nucleotide-long synthetic lac operator on pMB9 plasmid or cells carrying a natural lac operator on pOP203-1 plasmid.  相似文献   

5.
We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.  相似文献   

6.
7.
A new method for purification of specific DNA sequences using a solid phase technique has been developed based on a fusion between the Escherichia coli lac repressor gene (lacI) and the staphylococcal protein A gene (spa). The fusion protein, expressed in Escherichia coli, is active both in vivo and in vitro with respect to its three functional activities (DNA binding, IPTG induction, and IgG binding). The recombinant protein can be immobilized in a one-step procedure with high yield and purity using the specific interaction between protein A and the Fc-part of immunoglobulin G. The immobilized repressor can thereafter be used for affinity purification of specific DNA fragments containing the lac operator (lacO) sequence.  相似文献   

8.
9.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

10.
11.
cDNA encoding human preproPTH (hpreproPTH) was expressed in Escherichia coli to study the processing of the precursor to hPTH and its secretion by the bacterial secretory apparatus. We first constructed hybrid genes that differed randomly in the distance between the E. coli lac promoter's ribosomal binding site and DNA encoding a fusion protein with beta-galactosidase activity and the prepro sequence of hpreproPTH on the aminoterminus. Starting with clones identified as efficient producers of beta-galactosidase on indicator agar plates, the coding sequence for hpreproPTH was reconstituted intact. In a different construction we placed the hpreproPTH coding sequence downstream from the lac promoter at a distance of 12 base pairs from the ribosomal binding site. PTH immunoreactive proteins from multiple clones were identified by protein gel electrophoresis and by protein microsequencing. PTH-related proteins encoded by different plasmids were shown to be hpreproPTH with amino-terminal extensions of either two or four amino acids and as authentic hpreproPTH. Two hPTH fragments, hPTH(3-84) and hPTH(8-84), were also observed. The trypsin accessibility of hpreproPTH and of the two hPTH fragments in pulse-chase, cell-fractionation experiments using intact and lysed spheroplasts lets us conclude that the mammalian signal sequence directs hpreproPTH to the surface of the spheroplast membrane but is not appropriately cleaved by the signal peptidase.  相似文献   

12.
The complex between lac repressor headpiece and short rodlike DNA fragments containing the lac operator sequence is characterised by measurements of the rotation diffusion. Using the method of electric dichroism we measure the rotation relaxation and determine changes in the length of the DNA upon ligand binding with high accuracy. According to these measurements any change in the length of the operator DNA upon binding of the first two headpiece molecules remains below 1A; the electric dichroism also remains virtually unchanged. At high degrees of (unspecific) binding we observe an increase in the rotation relaxation time, which is attributed to an increase of the apparent mean radius of the complex. As a control of our procedure for the determination of length changes we use the intercalation of ethidium bromide and arrive at an increase of the DNA length per bound ethidium of 3.2A (at 3.4A rise per base pair). The results obtained for the headpiece operator complex are not consistent with models assuming large changes of the DNA structure or intercalation of tyrosine residues.  相似文献   

13.
We have studied the binding of the CAP protein to an 18 base pair lac promoter sequence comprising the core of the CAP recognition sequence. Specific binding of this sequence was established by competition binding assays and comparison of the relative affinities of a number of lac promoter, lac operator, and unspecific sequences of different lengths. The effect of the binding of CAP to the 18 base pair promoter sequence and, for comparison, to an 18 base pair symmetric operator and an oligonucleotide of unrelated sequence have been studied by 1H NMR. Binding of CAP does not bring about any changes in the chemical shift values of the imino proton resonances of the DNA, but causes the selective line broadening of two of the resonances. The comparison of these data with results of gel retardation assays published previously (1) allows the identification and localization of a kink induced in the DNA by the CAP binding to its specific site on the lac promoter.  相似文献   

14.
The chromosomal lac operator of Escherichia coli was replaced by a 22 bp oligonucleotide containing the binding site of the yeast gal4 protein. Induction of gal4 protein synthesis in these bacteria repressed beta-galactosidase synthesis at least 30-fold. These results show that it is possible to detect in bacteria with a simple assay the DNA binding activity of a eukaryotic protein with a defined sequence specificity. This opens new avenues for the isolation in E. coli of mutants of DNA binding proteins unable to bind to their DNA targets, and for direct cloning in bacteria of cDNA coding for DNA binding proteins with defined sequence specificity.  相似文献   

15.
The effects of prior covalent cysteine modification or nonspecific DNA presence on the reaction of lac repressor protein with N-bromosuccinimide have been investigated. At low excesses, N-bromosuccinimide oxidation causes loss of operator DNA binding activity with simultaneous retention of inducer and nonspecific DNA binding activities. Cysteine and methionine are oxidized under the conditions utilized. Covalent modification of the cysteines of repressor prior to reaction decreased the observed loss of operator DNA binding capacity; the presence of nonspecific DNA partially prevented oxidation of the cysteines by N-bromosuccinimide, and concurrent protection of operator binding ability was observed. Methionine oxidation was observed in the cases where protection of the operator DNA binding capacity of repressor was seen. The region surrounding cysteine 107 was found to be influential in maintaining intact operator DNA binding function in repressor. This observation provides chemical evidence for the contribution of the core region of repressor in determining specificity of the protein in binding the lac operator. The protection from oxidation of cysteine residues in the core region by the presence of nonspecific DNA suggests that this binding influences the core region of the protein.  相似文献   

16.
Evidence for leucine zipper motif in lactose repressor protein   总被引:10,自引:0,他引:10  
Amino acid sequence homology between the carboxyl-terminal segment of the lac repressor and eukaryotic proteins containing the leucine zipper motif with associated basic DNA binding region (bZIP) has been identified. Based on the sequence comparisons, site-specific mutations have been generated at two sites predicted to participate in oligomer formation based on the three-leucine heptad repeat at positions 342, 349, and 356. Leu342----Ala, Leu349----Ala, and Leu349----Pro have been isolated and their oligomeric state and ligand binding properties evaluated. These mutant proteins do not form tetramers but exist as stable dimers with inducer binding comparable with the wild-type protein. Apparent operator affinities for lac repressor proteins with mutations in the proposed bZIP domain were significantly lower than the corresponding wild-type values. For these dimeric mutant proteins, the monomer-dimer equilibrium is linked to the apparent operator binding constant. The values for the monomer-monomer binding constant and for the intrinsic operator binding constant for the dimer cannot be resolved from measurements of the observed Kd for operator DNA. Further studies on these proteins are in progress.  相似文献   

17.
A method for studying the sequence-specific binding of proteins to DBA is described. The technique is a simple conjoining of the Maxam-Gilbert DNA-sequencing method and the technique of DNAase-protected fragment isolation. Fragments of a 5' end-labelled, double-stranded DNA segment, partially degraded by DNAase in the presence and absence of the binding protein, are visualized by electrophoresis and autoradiography alongside the base-specific reaction products of the Maxam-Gilbert sequencing method. It is then possible to see the protective "footprint" of the binding protein on the DNA sequence. The binding of lac repressor to lac operator is visualized by "footprinting" as an example. Equillibrium estimates indicate that 10-fold sequence-specificity (differential binding constant) could be studied easily using this technique.  相似文献   

18.
We have examined the interactions of lac repressor and RNA polymerase with the DNA of the lac control region, using a method for direct visualization of the regions of DNA protected by proteins from DNAase attack. The repressor protects the operator essentially as reported by Gilbert and Maxam (1) with some small modifications. However, the evidence reported here concerning the binding of RNA polymerase to the DNA of the promoter mutant UV5 indicates that : 1) the RNA polymerase molecule binds asymmetrically to the promoter DNA, 2) RNA polymerase protects DNA sequences to within a few bases of the CAP binding site, suggesting direct interaction between polymerase and the CAP protein at this site, 3) RNA polymerase still binds to the promoter when repressor is bound to the operator, but fails to form the same extensive complex.  相似文献   

19.
Polyacrylamide gel electrophoresis has been used to visualise and quantitate complexes between the Escherichia coli cyclic AMP receptor protein (CRP) and DNA fragments containing the promoter region of either the E. coli galactose or lactose operons. We show that, although CRP binding to the gal fragment is weaker than binding to the lac fragment, in each case, stable complexes are formed between one dimer of CRP and one molecule of DNA. We have examined the effects of a series of deletions and point mutations in the gal promoter region on CRP binding. From the position of deletions and mutations which prevent the formation of stable complexes, we deduce the location and extent of the sequence at the CRP binding site. We show that it covers approximately the same length of sequence as the binding site at the lac promoter. Unlike the lac site, the gal site contains no palindromic sequence. We discuss the importance of symmetry in the sequence at CRP binding sites and the validity of CRP binding consensus sequences which have been proposed.  相似文献   

20.
How Lac repressor finds lac operator in vitro.   总被引:6,自引:0,他引:6  
Filter-binding and gel mobility shift assays were used to analyse the kinetics of the interaction of Lac repressor with lac operator. A comparison of the two techniques reveals that filter-binding assays with tetrameric Lac repressor have often been misinterpreted. It has been assumed that all complexes of Lac repressor and lac operator DNA bind with equal affinity to nitrocellulose filters. This assumption is wrong. Sandwich or loop complexes where two lac operators bind to one tetrameric Lac repressor are not or are only badly retained on nitrocellulose filters under normal conditions. Taking this into account, dimeric and tetrameric Lac repressor do not show any DNA-length dependence of their association and dissociation rate constants when they bind to DNA fragments smaller than 2455 base-pairs carrying a single symmetric ideal lac operator. A ninefold increased association rate to ideal lac operator on lambda DNA is observed for tetrameric but not dimeric Lac repressor. It is presumably due to intersegment transfer involving lac operator-like sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号