首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies against programmed death (PD) pathway are revolutionizing cancer immunotherapy. Currently five antibodies against PD-1/PD-L1 have been approved. The clinical use of these antibodies is rapidly expanding. Incorporation of PD antibodies into chemotherapy regimens is in active clinical investigations. The combination of pembrolizumab with carboplatin and pemetrexed has been approved for the first line therapy of metastatic non-squamous non-small cell lung cancer. Combination of PD-1/PD-L1 antibodies with small molecule inhibitors such as tyrosine kinase inhibitors and IDO inhibitors are in active clinical trials. This review summarized recent development in clinical trials of PD-1 and PD-L1 antibodies for cancer immunotherapy.  相似文献   

2.
Colorectal cancer (CRC) is the fourth most common cancer type and is the second leading cause of cancer deaths annually in the United States. Conventional treatment options include postoperative (adjuvant) and preoperative (neoadjuvant) chemotherapy and radiotherapy. Although these treatment modalities have shown to decrease tumor burden, a major limitation to chemothearpy/radiotherapy is the high recurrence rate in patients. Immune-modulation strategies have emerged as a promising new therapeutic avenue to reduce this recurrence rate while minimizing undesirable systemic side effects. This review will focus specifically on the mechanisms of monoclonal antibodies: immune checkpoint inhibitors and cytokines, as well as current drugs approved by the Food and Drug Administration (FDA) and new clinical/pre-clinical trials. Finally, this review will investigate emerging methods used to monitor tumor response post-treatment.  相似文献   

3.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.  相似文献   

4.
Oncolytic virus immunotherapy is rapidly gaining interest in the field of immunotherapy against cancer. The minimal toxicity upon treatment and the dual activity of direct oncolysis and immune activation make therapy with oncolytic viruses (OVs) an interesting treatment modality. The safety and efficacy of several OVs have been assessed in clinical trials and, so far, the Food and Drug Administration (FDA) has approved one OV. Unfortunately, most treatments with OVs have shown suboptimal responses in clinical trials, while they appeared more promising in preclinical studies, with tumours reducing after immune cell influx. In several clinical trials with OVs, parameters such as virus replication, virus-specific antibodies, systemic immune responses, immune cell influx into tumours and tumour-specific antibodies have been studied as predictors or correlates of therapy efficacy. In this review, these studies are summarized to improve our understanding of the determinants of the efficacy of OV therapies in humans and to provide insights for future developments in the viro-immunotherapy treatment field.  相似文献   

5.
Interleukin-2 and interleukin-15: immunotherapy for cancer   总被引:13,自引:0,他引:13  
Interleukin (IL)-2 and IL-15 are two cytokine growth factors that regulate lymphocyte function and homeostasis. Early clinical interest in the use of IL-2 in the immunotherapy of renal cell carcinoma and malignant melanoma demonstrated the first efficacy for cytokine monotherapy in the treatment of neoplastic disease. Advances in our understanding of the cellular and molecular biology of IL-2 and its receptor complex have provided rationale to better utilize IL-2 to expand and activate immune effectors in patients with cancer. Exciting new developments in monoclonal antibodies recognizing tumor targets and tumor vaccines have provided new avenues to combine with IL-2 therapy in cancer patients. IL-15, initially thought to mediate similar biological effects as IL-2, has been shown to have unique properties in basic and pre-clinical studies that may be of benefit in the immunotherapy of cancer. This review first summarizes the differences between IL-2 and IL-15 and highlights that better understanding of normal physiology creates new ideas for the immunotherapy of cancer. The application of high, intermediate, and low/ultra low dose IL-2 therapy in clinical trials of cancer patients is discussed, along with new avenues for its use in neoplastic diseases. The growing basic and pre-clinical evidence demonstrating that IL-15 may be useful in immunotherapy approaches to cancer is also presented.  相似文献   

6.
Immune checkpoint inhibitors (ICIs) and immunotherapy have proven to be a transformative therapy for many forms of cancer treatment. While many antibodies targeting the PD-1, PD-L1, and CTLA-4 pathways have been approved for clinical use by the FDA, it is clear that a single ICI is not sufficient to eradicate disease. ICI combination strategies are being extensively investigated to advance cancer treatment to next curative stage. Among the immune checkpoint inhibitors being actively investigated, the potential of VISTA (V-domain Ig suppressor of T cell activation), a unique B7 family member that functions as both ligand and receptor, is being actively pursued. This article summarizes the expression and immunomodulatory effects of VISTA in autoimmune diseases and cancer, and assesses its potential as an additional component of immune checkpoint cancer therapy.  相似文献   

7.
Receptor tyrosine kinases (RTKs) are cell surface receptors that bind growth factor ligands and initiate cellular signaling. Of the 20 classes of RTKs, 7 classes, I-V, VIII, and X, are linked to head and neck cancers (HNCs). We focus on the first class of RTK, epidermal growth factor receptor (EGFR), as it is the most thoroughly studied class. EGFR overexpression is observed in 20% of tumors, and expression of EGFR variant III is seen in 15% of aggressive chemoradiotherapy resistant HNCs. Currently, the EGFR monoclonal antibody (mAb) cetuximab is the only FDA approved RTK-targeting drug for the treatment of HNCs. Clinical trials have also included EGFR mAbs, with tyrosine kinase inhibitors, and small molecule inhibitors targeting the EGFR, MAPK, and mTOR pathways. Additionally, Immunotherapy has been found to be effective in 15 to 20% of patients with recurrent or metastatic HNC as a monotherapy. Thus, attempts are underway for the combinatorial treatment of immunotherapy and EGFR mAbs to determine if the recruitment of immune cells in the tumor microenvironment can overcome EGFR resistance.  相似文献   

8.
虽然近年来肿瘤的治疗取得较大进展,乳腺癌依旧是威胁女性健康的主要杀手。近年来,乳腺癌相关的免疫治疗取得较大进展,肿瘤浸润淋巴细胞(TILs)、程序性死亡受体 1(PD 1)及其配体PD L1、肿瘤突变负荷等肿瘤标志物对乳腺癌免疫治疗具有预测作用,并与乳腺癌的预后相关。免疫检查点抑制剂,例如PD-1/PD-L1及细胞毒性T淋巴细胞抗原4(CTLA 4)抑制剂在乳腺癌中取得极大进展,各期临床试验结果显示不同的效用。肿瘤疫苗的使用为乳腺癌免疫治疗的另一途径,虽然部分疫苗在临床试验中取得较好成效,但绝大多数仍需深入研究,乳腺癌免疫治疗之途仅为开端,依旧需要大量研究。本文简要介绍了乳腺癌免疫治疗相关的生物标志物、免疫检查点抑制剂以及肿瘤疫苗的研究进展。  相似文献   

9.
Following dramatic success in many types of advanced solid tumors, interest in immunotherapy for the treatment of colorectal cancer (CRC) is increasingly growing. Given the compelling long-term durable remission, two programmed cell death 1 (PD-1)-blocking antibodies, pembrolizumab and nivolumab (with or without Ipilimumab), have been approved for the treatment of patients with metastatic colorectal cancer (mCRC) that is mismatch-repair-deficient and microsatellite instability-high (dMMR-MSI-H). Practice-changing results of several randomized controlled trials to move immunotherapy into the first-line treatment for MSI-H metastasis cancer and earlier stage were reported successively in the past 2 years. Besides, new intriguing advances to expand the efficacy of immunotherapy to mCRC that is mismatch-repair-proficient and low microsatellite instability (pMMR-MSI-L) demonstrated the potential benefits for the vast majority of mCRC cases. Great attention is also paid to the advances in cancer vaccines and adoptive cell therapy (ACT). In this review, we summarize the above progresses, and also highlight the current predictive biomarkers of responsiveness in immunotherapy with broad clinical utility.  相似文献   

10.
Mechanisms of resistance to anti-angiogenesis therapies   总被引:1,自引:0,他引:1  
Angiogenesis, the formation of new blood vessels from preexisting ones, provides oxygen and nutrients to actively proliferating tumor cells. Hence, it represents a critical aspect of tumor progression and metastasis. Because inhibition of angiogenesis represents a major approach to cancer treatment, the development of inhibitors of angiogenesis is a major challenge. The first FDA approved anti-angiogenic drug bevacizumab, a humanized monoclonal antibody directed against the Vascular Endothelial Growth Factor (VEGF), has been approved for the treatment of metastatic colorectal, lung, breast, and kidney cancers. The encouraging results have lead to the development, in the past few years, of other agents targeting angiogenic pathways as potent anti-cancer drugs and a number of them have been approved for metastatic breast, lung, kidney, and central nervous system cancers. Despite a statistically significant increase in progression free survival, which has accelerated FDA approval, no major benefit to overall survival was described and patients inevitably relapsed due to acquired resistance. However, while progression free survival was increased by only a few months for the majority of the patients, some clearly benefited from the treatment with a real increase in life span. The objective of this review is to present an overview of the different treatments targeting angiogenesis, their efficacy and the mechanisms of resistance that have been identified in different cancer types. It is essential to understand how resistance (primary or acquired over time) develops and how it may be overcome.  相似文献   

11.
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.  相似文献   

12.
Interleukin 12 (IL-12) seemed to represent the ideal candidate for tumor immunotherapy, due to its ability to activate both innate (NK cells) and adaptive (cytotoxic T lymphocytes) immunities. However, despite encouraging results in animal models, very modest antitumor effects of IL-12 in early clinical trials, often accompanied by unacceptable levels of adverse events, markedly dampened  hopes of the successful use of this cytokine in cancer patients. Recently, several clinical studies have been initiated in which IL-12 is applied as an adjuvant in cancer vaccines, in gene therapy including locoregional injections of IL-12 plasmid and in the form of tumor-targeting immunocytokines (IL-12 fused to monoclonal antibodies). The near future will show whether this renewed interest in the use of IL-12 in oncology will result in meaningful therapeutic effects in a select group of cancer patients.  相似文献   

13.
Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.  相似文献   

14.
Unlike other types of breast cancers (BCs), no specific therapeutic targets have been established for triple negative breast cancer (TNBC). Therefore, chemotherapy and radiotherapy are the only available adjuvant therapeutic choices for TNBC. New emerging reports show that TNBC is associated with higher numbers of intratumoral tumor infiltrating lymphocytes. This is indicative of host anti-TNBC immune surveillance and suggesting that immunotherapy can be considered as a therapeutic approach for TNBC management. Recent progress in molecular mechanisms of tumor-immune system interaction and cancer vaccine development studies, fast discoveries and FDA approvals of immune checkpoint inhibitors, chimeric antigen receptor T-cells, and oncolytic virotherapy have significantly attracted attention and research directions toward the immunotherapeutic approach to TNBC. Here in this review different aspects of TNBC immunotherapies including the host immune system-tumor interactions, the tumor microenvironment, the relevant molecular targets for immunotherapy, and clinical trials in the field are discussed.  相似文献   

15.
Immunotherapy of tumor by targeting angiogenesis   总被引:4,自引:0,他引:4  
As early as 1971, Folkman proposed that thegrowth of and persistence of solid tumors and theirmetastasis depended on an adequate blood supply and,therefore, an anti-angiogenic strategy might be effec-tive as an anticancer therapy. As a strategy for cancertherapy, anti-angiogenic therapy attempts to stop newvessels from forming around a tumor and break up theexisting network of abnormal capillaries that feed thecancerous mass[1,2]. Anti-angiogenic therapy take someadvantages over the convention…  相似文献   

16.
血管生成是非小细胞肺癌(NSCLC)生长、复发和转移的关键环节。抗血管生成治疗可以通过使肿瘤血管及微环境正常化,改善肿瘤血供和含氧量,增强放、化疗效果。也可以抑制肿瘤内毛细血管生长,使肿瘤细胞进入休眠状态,并诱导其凋亡。因此,靶向抗血管生成已成为NSCLC治疗研究的主要方向。贝伐珠单抗和雷莫芦单抗已被批准用于联合一线标准化疗治疗局部晚期或转移性NSCLC。然而,在这一治疗过程中,肿瘤会逐渐对抗血管生成药物产生耐药,这可能与肿瘤微环境(tumor microenvironment,TME)的改变有关。最近,免疫检查点抑制剂(immune checkpoint inhibitors,ICI)已经取得了相当大的成功,但是反应率仍然被认为不是最佳的。因此,为了提高疗效,各种组合疗法正在测试中。临床前数据表明促血管生成因子具有免疫抑制作用,为ICI和抗血管生成药物联合使用提供了合理的解释。并且有研究认为,抗血管生成治疗与肿瘤免疫治疗相联合可能是一种相互增益的治疗策略。  相似文献   

17.
The success of monoclonal antibodies in clinical practice is dependent on good design. Finding a suitable target is the most important part as other properties of the antibody can be altered by genetic engineering. Antibodies that target lymphocyte antigens offer less toxic immunosuppressive treatment than currently available drugs and the first monoclonal antibody approved for human use is an immunosuppressive agent for treating rejection of renal transplants. Human trails of monoclonal antibodies to treat septic shock have been done and antibodies are also being developed to target common pathogens such as herpes simplex virus. Although monoclonal antibodies against cancer have been much heralded, their success has been limited by the poor access to the inside of tumours. Treatment of blood cancers has been more successful and a human antibody against B cell malignancies is being clinically tested. As knowledge about natural immune responses and antibody engineering increases many more monoclonals are likely to feature in clinical practice.  相似文献   

18.
Cancer immunotherapy   总被引:1,自引:0,他引:1  
Cancer is the second leading cause of death in the industrialized world. Most cancer patients are treated by a combination of surgery, radiation and/or chemotherapy. Whereas the primary tumor can, in most cases, be efficiently treated by a combination of these standard therapies, preventing the metastatic spread of the disease through disseminated tumor cells is often not effective. The eradication of disseminated tumor cells present in the blood circulation and micro-metastases in distant organs therefore represents another promising approach in cancer immunotherapy. Main strategies of cancer immunotherapy aim at exploiting the therapeutic potential of tumor-specific antibodies and cellular immune effector mechanisms. Whereas passive antibody therapy relies on the repeated application of large quantities of tumor antigen-specific antibodies, active immunotherapy aims at the generation of a tumor-specific immune response combining both humoral and cytotoxic T cell effector mechanisms by the host's immune system following vaccination. In the first part of this review, concurrent developments in active and passive cancer immunotherapy are discussed. In the second part, the various approaches for the production of optimized monoclonal antibodies used for anti-cancer vaccination are summarized.  相似文献   

19.
Monoclonal antibody drug immunoconjugates for targeted treatment of cancer   总被引:9,自引:0,他引:9  
Monoclonal antibodies (mAb) directed to tumor-associated antigens (TAA) or antigens differentially expressed on the tumor vasculature have been covalently linked to drugs that have different mechanisms of action and various levels of potency. The use of these mAb immunoconjugates to selectively deliver drugs to tumors has the potential to both improve antitumor efficacy and reduce the systemic toxicity of therapy. Several immunoconjugates, particularly those that incorporate internalizing antibodies and tumor-selective linkers, have demonstrated impressive activity in preclinical models. Immunoconjugates that deliver doxorubicin, maytansine and calicheamicin are currently being evaluated in clinical trials. The feasibility of using immunoconjugates as cancer therapeutics has been clearly demonstrated. Gemtuzumab ozogamicin, a calicheamicin conjugate that targets CD33, has recently been approved by the Food and Drug Administration (FDA) for treatment of acute myelogenous leukemia (AML). This review concentrates on the properties of the tumor and the characteristics of the mAb, linker, and drugs that influence the efficacy, potency, and selectivity of immunconjugates selected for cancer treatment.  相似文献   

20.
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号