首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breeding for fusarium head blight (FHB) resistance of wheat is a continuous challenge for plant breeders. Resistance to FHB is a quantitative trait, governed by several to many genes and modulated by environmental conditions. The presented study was undertaken to assess the effect on improving FHB resistance and on possible unwanted side effects (‘linkage drag’) of two resistance QTL, namely Fhb1 and Qfhs.ifa-5A, from the spring wheat line CM-82036 when transferred by marker-assisted backcrossing into several European winter wheat lines. To achieve these goals, we developed and evaluated fifteen backcross-two–derived families based on nine European winter wheat varieties as recipients and the FHB resistant variety CM-82036 as resistance donor. The QTL Qfhs.ifa-5A had a relatively small impact on increasing FHB resistance. On average lines with Fhb1 plus Qfhs.ifa-5A combined were only slightly more resistant compared to lines with Fhb1 alone. The obtained results suggest that the effect of the spring wheat–derived QTL on improving FHB resistance increases in the order Qfhs.ifa-5A < Fhb1 ≤ Qfhs.ifa-5A plus Fhb1 combined. The genetic background of the recipient line had a large impact on the resistance level of the obtained lines. No systematic negative effect of the spring wheat–derived QTL on grain yield, thousand grain weight, hectoliter weight and protein content was found. The use of spring wheat–derived FHB resistance QTL for breeding high yielding cultivars with improved FHB resistance appears therefore highly promising.  相似文献   

2.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

3.
Fusarium head blight (FHB) is one of the most important wheat diseases that causes yield and quality losses as well as contamination with deoxynivalenol (DON). This study aimed for marker-based introduction of three previously mapped QTLs from two German winter wheat resistance sources into an elite background unrelated to the mapping population. A double cross (DC) served as initial population that combined two resistance donor-QTL alleles from "Dream" (Qfhs.lfl-6AL, Qfhs.lfl-7BS) and one donor-QTL allele from "G16-92" on chromosome 2BL with two high yielding, susceptible elite winter wheats ("Brando", "LP235.1"). The initial population of 600 DC-derived F(1) lines was selected with SSR markers for the respective QTLs. After two marker-selection steps, each of eight marker classes was represented by 9-22 lines possessing the respective donor-QTL allele or all possible combinations thereof in the homozygous state. The effect of the QTLs was estimated by field tests at four locations inoculated with Fusarium culmorum. Resistance was measured as the mean of multiple FHB ratings (0-100%). Marker classes incorporating only one QTL were not significantly more resistant than the class without any QTL, the combination of two donor-QTL alleles reduced FHB significantly. On average, lines with Qfhs.lfl-6AL were significantly taller than lines without this QTL. A considerable variation for FHB resistance was found in all marker classes. Marker-based introduction of two QTLs enhanced mean FHB rating by about 40 percentage points, the selected plants, however, were, on average, significantly taller. Both findings strongly support a phenotypic selection following after marker-based introduction of effective QTLs.  相似文献   

4.
Fusarium head blight (FHB) is a devastating disease of cultivated wheat worldwide. Partial resistance to FHB has been identified in common wheat (Triticum aestivum L.). However, sources of effective FHB resistance have not been found in durum wheat (T. turgidum L. var. durum). A major FHB resistance quantitative trait loci (QTL), Qfhs.ndsu-3AS, was identified on chromosome 3A of T. dicoccoides, a wild relative of durum wheat. Here, we saturated the genomic region containing the QTL using EST-derived target region amplified polymorphism (TRAP), sequence tagged site (STS), and simple sequence repeat (SSR) markers. A total of 45 new molecular marker loci were detected on chromosome 3A and the resulting linkage map consisted of 55 markers spanning a genetic distance of 277.2 cM. Qfhs.ndsu-3AS was positioned within a chromosomal interval of 11.5 cM and is flanked by the TRAP marker loci, Xfcp401 and Xfcp397.2. The average map distance between the marker loci within this QTL region was reduced from 4.9 cM in the previous study to 3.5 cM in the present study. Comparative mapping indicated that Qfhs.ndsu-3AS is not homoeologous to Qfhs.ndsu-3BS, a major FHB QTL derived from the common wheat cultivar Sumai 3. These results facilitate our efforts toward map-based cloning of Qfhs.ndsu-3AS and utilization of this QTL in durum wheat breeding via marker-assisted selection.  相似文献   

5.
Fusarium head blight (FHB) resistance is of particular importance in wheat breeding programmes due to the detrimental effects of this fungal disease on human and animal health, yield and grain quality. Segregation for FHB resistance in three European winter wheat populations enabled the identification of resistance loci in well-adapted germplasm. Populations obtained from crosses of resistant cultivars Apache, History and Romanus with susceptible semi-dwarfs Biscay, Rubens and Pirat, respectively, were mapped and analysed to identify quantitative trait loci (QTL) for FHB severity, ear emergence time and plant height. The results of the present study together with previous studies in UK winter wheat indicated that the semi-dwarfing allele Rht-D1b seems to be the major source for FHB susceptibility in European winter wheat. The high resistance level of the cultivars Romanus and History was conditioned by several minor resistance QTL interacting with the environment and the absence of Rht-D1b. In contrast, the semi-dwarf parents contributed resistance alleles of major effects apparently compensating the negative effects of Rht-D1b on FHB reaction. The moderately resistant cultivar Apache contributed a major QTL on chromosome 6A in a genome region previously shown to carry resistance loci to FHB. A total of 18 genomic regions were repeatedly associated with FHB resistance. The results indicate that common resistance-associated genes or genomic regions are present in European winter wheats.  相似文献   

6.
Fusarium head blight (FHB) of wheat has become a serious threat to wheat crops in numerous countries. In addition to loss of yield and quality, this disease is of primary importance because of the contamination of grain with mycotoxins such as deoxynivalenol (DON). The Swiss winter cultivar Arina possesses significant resistance to FHB. The objective of this study was to map quantitative trait loci (QTL) for resistance to FHB, DON accumulation and associated traits in grain in a double haploid (DH) population from a cross between Arina and the FHB susceptible UK variety Riband. FHB resistance was assessed in five trials across different years and locations. Ten QTL for resistance to FHB or associated traits were detected across the trials, with QTL derived from both parents. Very few of the QTL detected in this study were coincident with those reported by authors of two other studies of FHB resistance in Arina. It is concluded that the FHB resistance of Arina, like that of the other European winter wheat varieties studied to date, is conferred by several genes of moderate effect making it difficult to exploit in marker-assisted selection breeding programmes. The most significant and stable QTL for FHB resistance was on chromosome 4D and co-localised with the Rht–D1 locus for height. This association appears to be due to linkage of deleterious genes to the Rht-D1b (Rht2) semi-dwarfing allele rather than differences in height per se. This association may compromise efforts to enhance FHB resistance in breeding programmes using germplasm containing this allele.  相似文献   

7.
Fusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance. QTL analysis across environments revealed nine QTL for FHB resistance and four QTL for plant height (PH). One FHB QTL was coincident with the Rht-1D locus and accounted for up to 51% of the phenotypic variance. The enhanced FHB susceptibility associated with Rht-D1b is not an effect of PH per se as other QTL for height segregating in this population have no influence on susceptibility. Experiments with near-isogenic lines supported the association between susceptibility and the Rht-D1b allele conferring the semi-dwarf habit. Our results demonstrate that lines carrying the Rht-1Db semi-dwarfing allele are compromised in resistance to initial infection (type I resistance) while being unaffected in resistance to spread within the spike (type II resistance).  相似文献   

8.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. This study was to identify new quantitative trait loci (QTL) for FHB resistance and the molecular markers closely linked to the QTL in wheat cultivar Chokwang. The primers of 612 simple sequence repeats (SSRs) and 12 target-region-amplified polymorphism (TRAP) marker were analyzed between resistant (Chokwang) and susceptible (Clark) parents. One hundred and seventy-two polymorphic markers were used to screen a population of 79 recombinant inbred lines (RILs) derived from the cross of Chokwang and Clark. One major QTL, Qfhb.ksu-5DL1, was identified on chromosome 5DL. The SSR marker Xbarc 239 was mapped in the QTL region, and also physically located to the bin of 5DL1-0.60-0.74 by using Chinese Spring deletion lines. Another QTL Qfhb.ksu-4BL1was linked to SSR Xbarc 1096 and tentatively mapped on 4BL. A QTL on 3BS, Qfhb.ksu-3BS1, was also detected with marginal significance in this population. Different marker alleles for these QTL were detected between Chokwang and Sumai 3 and its derivatives. These results suggested that Chokwang contains new QTL for FHB resistance that are different from those in Sumai 3. Pyramiding resistance QTL from various sources may enhance FHB resistance in wheat cultivars.  相似文献   

9.
Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat   总被引:9,自引:0,他引:9  
The devastating effect of Fusarium head blight (FHB) caused by Fusarium graminearum has led to significant financial losses across the Upper Midwest of the USA. These losses have spurred the need for research in biological, chemical, and genetic control methods for this disease. To date, most of the research on FHB resistance has concentrated on hexaploid wheat (Triticum aestivum L.) lines originating from China. Other sources of resistance to FHB would be desirable. One other source of resistance for both hexaploid wheat and tetraploid durum wheat (T. turgidum L. var. durum) is the wild tetraploid, T. turgidum L. var. dicoccoides (T. dicoccoides). Previous analysis of the `Langdon'-T. dicoccoides chromosome substitution lines, LDN(Dic), indicated that the chromosome 3A substitution line expresses moderate levels of resistance to FHB. LDN(Dic-3A) recombinant inbred chromosome lines (RICL) were used to generate a linkage map of chromosome 3A with 19 molecular markers spanning a distance of 155.2 cM. The individual RICL and controls were screened for their FHB phenotype in two greenhouse seasons. Analysis of 83 RICL identified a single major quantitative trait locus, Qfhs.ndsu-3AS, that explains 37% of the phenotypic or 55% of the genetic variation for FHB resistance. A microsatellite locus, Xgwm2, is tightly linked to the highest point of the QTL peak. A region of the LDN (Dic-3A) chromosome associated with the QTL for FHB resistance encompasses a 29.3 cM region from Xmwg14 to Xbcd828.  相似文献   

10.
A major quantitative trait locus (QTL), Qfhs.ndsu-3BS, for resistance to Fusarium head blight (FHB) in wheat has been identified and verified by several research groups. The objectives of this study were to construct a fine genetic map of this QTL region and to examine microcolinearity in the QTL region among wheat, rice, and barley. Two simple sequence repeat (SSR) markers (Xgwm533 and Xgwm493) flanking this QTL were used to screen for recombinants in a population of 3,156 plants derived from a single F7 plant heterozygous for the Qfhs.ndsu-3BS region. A total of 382 recombinants were identified, and they were genotyped with two more SSR markers and eight sequence-tagged site (STS) markers. A fine genetic map of the Qfhs.ndsu-3BS region was constructed and spanned 6.3 cM. Based on replicated evaluations of homozygous recombinant lines for Type II FHB resistance, Qfhs.ndsu-3BS, redesignated as Fhb1, was placed into a 1.2-cM marker interval flanked by STS3B-189 and STS3B-206. Primers of STS markers were designed from wheat expressed sequence tags homologous to each of six barley genes expected to be located near this QTL region. A comparison of the wheat fine genetic map and physical maps of rice and barley revealed inversions and insertions/deletions. This suggests a complex microcolinearity among wheat, rice, and barley in this QTL region.  相似文献   

11.
Fusarium head blight (FHB) caused by Fusarium culmorum is an economically important disease of wheat that may cause serious yield and quality losses under favorable climate conditions. The development of disease-resistant cultivars is the most effective control strategy. Worldwide, there is heavy reliance on the resistance pool originating from Asian wheats, but excellent field resistance has also been observed among European winter wheats. The objective of this study was to map and characterize quantitative traits loci (QTL) of resistance to FHB among European winter wheats. A population of 194 recombinant inbred lines (RILs) was genotyped from a cross between two winter wheats Renan (resistant)/Récital (susceptible) with microsatellites, AFLP and RFLP markers. RILs were assessed under field conditions For 3 years in one location. Nine QTLs were detected, and together they explained 30-45% of the variance, depending on the year. Three of the QTLs were stable over the 3 years. One stable QTL, QFhs.inra.2b, was mapped to chromosome 2B and two QTLs QFhs.inra.5a2 and QFhs.inra5a3, to chromosome 5A; each of these QTLs explained 6.9-18.6% of the variance. Other QTLs were identified on chromosome 2A, 3A, 3B, 5D, and 6D, but these had a smaller effect on FHB resistance. One of the two QTLs on chromosome 5A was linked to gene B1 controlling the presence of awns. Overlapping QTLs for FHB resistance were those for plant height or/and flowering time. Our results confirm that wheat chromosomes 2A, 3A, 3B, and 5A carry FHB resistance genes, and new resistance factors were identified on chromosome arms 2BS and 5AL. Markers flanking these QTLs should be useful tools for combining the resistance to FHB of Asian and European wheats to increase the resistance level of cultivars.  相似文献   

12.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schw. (Petch)], is an increasingly important disease of wheat (Triticum aestivum L.). Host-plant resistance provides the best hope for reducing economic losses associated with FHB, but new sources of resistance are limited. The moderately resistant winter wheat cultivar, Ernie, may provide a source of resistance that differs from Sumai 3 but these genes have not been mapped. Also hindering resistance breeding may be associations of resistance with agronomic traits such as late maturity that may be undesirable in some production environments. This research was conducted to identify QTL associated with type II FHB resistance (FHB severity, FHBS), and to determine if they are associated with days to anthesis (DTA), number of spikelets (NOS), and the presence/absence of awns. Two hundred and forty-three F8 recombinant inbred lines from a cross between the resistant cultivar, Ernie and susceptible parent, MO 94-317 were phenotyped for type II FHB resistance using point inoculation in the greenhouse during 2002 and 2003. Genetic linkage maps were constructed using 94 simple sequence repeat (SSR) and 146 amplified fragment length polymorphic (AFLP) markers. Over years four QTL regions on chromosomes 2B, 3B, 4BL and 5A were consistently associated with FHB resistance. These QTL explained 43.3% of the phenotypic variation in FHBS. Major QTL conditioning DTA and NOS were identified on chromosome 2D. Neither the QTL associated with DTA and NOS nor the presence/absence of awns were associated with FHB resistance in Ernie. Our results suggest that the FHB resistance in Ernie appears to differ from that in Sumai 3, thus pyramiding the QTL in Ernie with those from Sumai 3 could result in enhanced levels of FHB resistance in wheat.  相似文献   

13.
14.
While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC2F3 lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL.  相似文献   

15.
Responses to photoperiod and low temperature are the two primary adaptive mechanisms which enable wheat plants to synchronize developmental processes with changes in seasonal climate. In this study, the developmental process was characterized at two stages: stem length during the onset of stem elongation and heading date. These two developmental events were monitored and mapped in recombinant inbred lines (RILs) of a population generated from a cross between two complementary and locally adapted hard winter wheat cultivars. ‘Intrada’ undergoes stem elongation earlier but reaches heading later, whereas ‘Cimarron’ undergoes stem elongation later but reaches heading earlier. Variation in the developmental process in this population was associated with three major QTLs centered on Xbarc200 on chromosome 2B, PPD-D1 on chromosome 2D, and Xcfd14 on chromosome 7D. The Intrada Xbarc200 and Xcfd14 alleles and the Cimarron PPD-D1 allele accelerated both stem elongation and heading stages, or the Cimarron Xbarc200 and Xcfd14 alleles and the Intrada PPD-D1 allele delayed both stem elongation and heading stages. Integrative effects of the three QTLs accounted for 43% (initial stem length) and 68% (heading date) of the overall phenotypic variation in this population. PPD-D1 is a reasonable candidate gene for the QTL on chromosome 2D, PPD-B1 could be associated with the QTL on chromosome 2B, but VRN-D3 (=FT-D1) was not linked with the QTL on chromosome 7D, suggesting that this is a novel locus involved in winter wheat development. Because the PPD-D1 QTL was observed to interact with other two QTLs, all of these QTLs could play a role in the same pathway as involved in photoperiod response of winter wheat.  相似文献   

16.
Fusarium graminearum Schwabe (Fusarium head blight, FHB) and Puccinia triticina Eriks (leaf rust) are two major fungal pathogens posing a continuous threat to the wheat crop; consequently, identifying resistance genes from various sources is always of importance to wheat breeders. We identified tightly linked single nucleotide polymorphism (SNP) markers for the FHB resistance quantitative trait locus (QTL) Qfhs.pur-7EL and the leaf rust resistance locus Lr19 using genotyping-by-sequencing (GBS) in a wheat–tall wheatgrass introgression-derived recombinant inbred line (RIL) population. One thousand and seven hundred high-confidence SNPs were used to conduct the linkage and QTL analysis. Qfhs.pur-7EL was mapped to a 2.9 cM region containing four markers within a 43.6 cM segment of wheatgrass chromosome 7el2 that was translocated onto wheat chromosome 7DL. Lr19 from 7el1 was mapped to a 1.21 cM region containing two markers in the same area, in repulsion. Five lines were identified with the resistance-associated SNP alleles for Qfhs.pur-7EL and Lr19 in coupling. Two SNP markers in the Qfhs.pur-7EL region were converted into PCR-based KASP markers. Investigation of the genetic characteristics of the parental lines of this RIL population indicated that they are translocation lines in two different wheat cultivar genetic backgrounds instead of 7E–7D substitution lines in Thatcher wheat background, as previously reported in the literature.  相似文献   

17.
Resistance to Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe in wheat (Triticum aestivum L.) was identified in disomic chromosome substitution and translocation lines, into which chromosome 7el2 had been introgressed from wheatgrass, Thinopyrum ponticum. In this study, two chromosome substitution lines with different origins (designated as el1 and el2) and with different reactions to infection by F. graminearum were crossed to develop a segregating mapping population. The objectives of this study were to determine the effectiveness of this type II resistance and map it on chromosome 7el2. Type II resistance to FHB was characterized in the F2, F2:3 families, F4:5 plants and F5:6 recombinant inbred lines developed by single-seed descent; and the population was characterized in the F2 and F5 with DNA markers along the long arm of 7el. Composite interval mapping revealed a FHB resistance QTL, designated Qfhs.pur-7EL, located in the distal region of the long arm of 7el2 and delimited with flanking markers XBE445653 and Xcfa2240. Additive effects of Qfhs.pur-7EL reduced the number of diseased spikelets per spike following inoculation of one floret in four experiments by 1.5–2.6 and explained 15.1–32.5% of the phenotypic variation in the populations. Several STS-derived and EST-derived PCR or CAPS markers were developed in this chromosomal region, and showed the specificity of 7el2 compared to an array of wheat lines possessing other sources of FHB resistance. These markers are useful in an effort to shorten the chromosome segment of 7el2 and to use for marker-assisted introgression of this resistance into wheat.  相似文献   

18.
Fusarium head blight (FHB) is a devastating disease in wheat that reduces grain yield, grain quality and contaminates the harvest with deoxynivalenol (DON). As potent resistance sources Sumai 3 and its descendants from China and Frontana from Brazil had been analysed by quantitative trait loci (QTL) mapping. We introgressed and stacked two donor QTL from CM82036 (Sumai 3/Thornbird) located on chromosomes 3B and 5A and one donor QTL from Frontana on chromosome 3A in elite European spring wheat and estimated the effects of the three individual donor QTL and their four combinations on DON, Fusarium exoantigen content, and FHB rating adjusted to heading date. One class with the susceptible QTL alleles served as control. Each of the eight QTL classes was represented by 12–15 F3-derived lines tested in F5 generation as bulked progeny possessing the respective marker alleles homozygously. Traits were evaluated in a field experiment across four locations with spray inoculation of Fusarium culmorum. All three individual donor-QTL alleles significantly reduced DON content and FHB severity compared to the marker class with no donor QTL. The only exception was the donor-QTL allele 3A that had a low, but non-significant effect on FHB severity. The highest effect had the stacked donor-QTL alleles 3B and 5A for both traits. They jointly reduced DON content by 78% and FHB rating by 55% compared to the susceptible QTL class. Analysis of Fusarium exoantigen content illustrates that lower disease severity is associated with less mycelium content in the grain. In conclusion, QTL from non-adapted sources could be verified in a genetic background of German elite spring wheat. Within the QTL classes significant (P<0.05) genotypic differences were found among the individual genotypes. An additional phenotypic selection would, therefore, be advantageous after performing a marker-based selection.  相似文献   

19.
Stagonospora nodorum is the causal agent of the Stagonospora glume blotch disease in hexaploid wheat. The Swiss winter bread wheat cv. 'Arina' has a highly effective, durable and quantitative glume blotch resistance. We studied 240 single seed descent (SSD)-derived lines of an 'Arina × Forno' F5:7 population to identify and map quantitative trait loci (QTLs) for glume blotch resistance under natural infestation. Using composite interval mapping (CIM) and LOD>4.5, we detected two chromosomal regions on chromosome arms 3BS and 4BL which were specifically associated with glume blotch resistance. These identified QTLs were designated QSng.sfr-3BS and QSng.sfr-4BL, respectively. QSng.sfr-3BS peaked at the locus Xgwm389 in the telomeric region of the short arm of chromosome 3B and explained 31.2% of the observed phenotypic variance for the resistance within the population. The responsible QSng.sfr-3BS allele originated from the resistant parent 'Arina'. The QTL QSng.sfr-4BL (19.1%) mapped to chromosome arm 4BL ('Forno' allele) very close to two known genes, TaMlo and a catalase (Cat). Both QTL alleles combined could enhance the resistance level by about 50%. Additionally, they showed significant epistatic effects (4.4%). We found PCR-based microsatellite markers closely linked to QSng.sfr-3BS (gwm389) and QSng.sfr-4BL (gwm251) which make marker-assisted selection (MAS) for Stagonospora glume blotch resistance feasible. We also found one resistance QTL, QSng.sfr-5BL, on the long arm of chromosome 5B which overlapped with QTLs for plant height as well as heading time.Communicated by H. C. Becker  相似文献   

20.
Fusarium head blight (FHB), an important disease of barley in many areas of the world, causes losses in grain yield and quality. Deoxynivalenol (DON) mycotoxin residues, produced by the primary pathogen Fusarium graminearum, pose potential health risks. Barley producers may not be able to profitably market FHB-infected barley, even though it has a low DON level. Three types of FHB resistance have been described in wheat: Type I (penetration), Type II (spread), and Type III (mycotoxin degradation). We describe putative measures of these three types of resistance in barley. In wheat, the three resistance mechanisms show quantitative inheritance. Accordingly, to study FHB resistance in barley, we used quantitative trait locus (QTL) mapping to determine the number, genome location, and effects of QTLs associated with Type-I and -II resistance and the concentration of DON in the grain. We also mapped QTLs for plant height, heading date, and morphological attributes of the inflorescence (seeds per inflorescence, inflorescence density, and lateral floret size). QTL analyses were based on a mapping population of F1-derived doubled-haploid (DH) lines from the cross of the two-rowed genotypes Gobernadora and CMB643, a linkage map constructed with RFLP marker loci, and field evaluations of the three types of FHB resistance performed in China, Mexico, and two environments in North Dakota, USA. Resistance QTLs were detected in six of the seven linkage groups. Alternate favorable alleles were found at the same loci when different inoculation techniques were used to measure Type-I resistance. The largest-effect resistance QTL (for Type-II resistance) was mapped in the centromeric region of chromosome 2. All but two of the resistance QTLs coincided with QTLs determining morphological attributes of the inflorescence and/or plant height. Additional experiments are needed to determine if these coincident QTLs are due to linkage or pleiotropy and to more clearly define the biological basis of the FHB resistance QTLs. Plant architecture should be considered in FHB resistance breeding efforts, particularly those directed at resistance QTL introgression and/or pyramiding. Received: 22 November 1998 / Accepted: 2 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号