首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Oysters are permanently exposed to various microbes, and their defense system is continuously solicited to prevent accumulation of invading and pathogenic organisms. Therefore, impairment of the animal's defense system usually results in mass mortalities in cultured oyster stocks or increased bacterial loads in food products intended for human consumption. In the present study, experiments were conducted to examine the effects of stress on the juvenile oyster's resistance to the oyster pathogen Vibrio splendidus. Oysters (Crassostrea gigas) were challenged with a low dose of a pathogenic V. splendidus strain and subjected to a mechanical stress 3 days later. Both mortality and V. splendidus loads increased in stressed oysters, whereas they remained low in unstressed animals. Injection of noradrenaline or adrenocorticotropic hormone, two key components of the oyster neuroendocrine stress response system, also caused higher mortality and increased accumulation of V. splendidus in challenged oysters. These results suggest that the physiological changes imposed by stress, or stress hormones, influenced host-pathogen interactions in oysters and increased juvenile C. gigas vulnerability to Vibrio splendidus.  相似文献   

2.
Oysters are permanently exposed to various microbes, and their defense system is continuously solicited to prevent accumulation of invading and pathogenic organisms. Therefore, impairment of the animal's defense system usually results in mass mortalities in cultured oyster stocks or increased bacterial loads in food products intended for human consumption. In the present study, experiments were conducted to examine the effects of stress on the juvenile oyster's resistance to the oyster pathogen Vibrio splendidus. Oysters (Crassostrea gigas) were challenged with a low dose of a pathogenic V. splendidus strain and subjected to a mechanical stress 3 days later. Both mortality and V. splendidus loads increased in stressed oysters, whereas they remained low in unstressed animals. Injection of noradrenaline or adrenocorticotropic hormone, two key components of the oyster neuroendocrine stress response system, also caused higher mortality and increased accumulation of V. splendidus in challenged oysters. These results suggest that the physiological changes imposed by stress, or stress hormones, influenced host-pathogen interactions in oysters and increased juvenile C. gigas vulnerability to Vibrio splendidus.  相似文献   

3.
The French mollusc production is mainly based on the Pacific cupped oyster, Crassostrea gigas. Since 1991, outbreaks of mass mortality of juveniles are reported during the summer period. These outbreaks are a major concern of oyster industry. Several studies have established given bacterial strains to be pathogenic for bivalve species, including oysters. Here we present a study of mortality outbreaks of C. gigas, as initiated in 1995. In a first step, bacterial strains were isolated during mass mortality outbreak and were biochemically characterised. Among the isolated strains, some strains of Vibrio splendidus biovar II were found to be pathogenic by means of experimental challenge of oyster juveniles. In the second step, a genotypical identification of the pathogenic strain was undertaken, based on 16S RNA sequences and phylogenetic analysis. It confirmed that the pathogenetic strain belonged to Vibrio splendidus biovar II.  相似文献   

4.
《新西兰生态学杂志》2011,20(1):109-116
Bonamia is a protozoan parasite of the haemocytes of oysters (Tiostrea chilensis), in which it has an annual developmental cycle between November and August each year. The parasite transmits directly, oyster to oyster, and therefore disease spread is related to host stock density. The Foveaux Strait oyster population experiences large mortalities every 20-30 years, and these may be attributable to Bonamia. The parasite appears to become less pathogenic at the end of, and probably between, mass mortalities, and some oysters appear more tolerant of infection than others. On the basis of these observations, and considering other protist pathogen:oyster models, the apparently reduced pathogenicity of Bonamia is discussed in terms of parasite kinetics. The population dynamics and selection of parasite tolerant host stocks, and kinetics of parasite transmission, may explain the cyclic nature of large-scale mortalities in Foveaux Strait, without change in parasite pathogenicity.  相似文献   

5.
Screening a virulent Vibrio strain to study the interactions between bacterial infection and host immune defence is important to resolve large-scale summer oyster mortalities. Using adductor muscle injection we tested the oyster responses to phosphate-buffered saline (PBS), lipopolysaccharide (LPS), or Vibrio strains. Mortalities and stress gene expressions were used to characterize oyster immune responses. At 5 days post injection, the cumulative mortality rates in PBS, LPS, Vibrio tubiashii, Vibrio anguillarum, Vibrio alginolyticus and Vibrio aestuarianus groups were 8%, 16%, 36%, 40%, 40% and 76%, respectively, indicating that V. aestuarianus induced the highest death rate. Two-factor analyses of variance revealed that expression of SOD, CAT, GPX and HSP70 was influenced by bacterial injections in a time-dependent manner. The expression of all genes increased and reached their peak 3 or 12 h after bacterial injection and then decreased. These genes could be applied as immune responsive biomarkers to monitor early changes in oysters in response to bacterial infection. The greatest changes were observed in the V. aestuarianus-injected group, which may indicate that V. aestuarianus could be used as one of the more virulent strains for experimental infections.  相似文献   

6.
Many of the methods currently employed to restore Chesapeake Bay populations of the eastern oyster, Crassostrea virginica, assume closed recruitment in certain sub-estuaries despite planktonic larval durations of 2–3 weeks. In addition, to combat parasitic disease, artificially selected disease tolerant oyster strains are being used for population supplementation. It has been impossible to fully evaluate these unconventional tactics because offspring from wild and selected broodstock are phenotypically indistinguishable. This study provides the first direct measurement of oyster recruitment enhancement by using genetic assignment tests to discriminate locally produced progeny of a selected oyster strain from progeny of wild parents. Artificially selected oysters (DEBY strain) were planted on a single reef in each of two Chesapeake Bay tributaries in 2002, but only in the Great Wicomico River (GWR) were they large enough to potentially reproduce the same year. Assignment tests based on eight microsatellite loci and mitochondrial DNA markers were applied to 1579 juvenile oysters collected throughout the GWR during the summer of 2002. Only one juvenile oyster was positively identified as an offspring of the 0.75 million DEBY oysters that were planted in the GWR, but 153 individuals (9.7%) had DEBY ×wild F1 multilocus genotypes. Because oyster recruitment was high across the region in 2002, the proportionately low enhancement measured in the GWR would not otherwise have been recognized. Possible causes for low enhancement success are discussed, each bearing on untested assumptions underlying the restoration methods, and all arguing for more intensive evaluation of each component of the restoration strategy.  相似文献   

7.
Shellfish production is often affected by bacterial pathogens that cause high losses in hatcheries and nurseries. We evaluated the relative survival of larvae and juveniles of 3 Crassostrea virginica oyster lines: (1) GHP, a Rhode Island line; (2) NEHY, a line resistant to dermo and multinucleated sphere X diseases; and (3) FLOWERS, a line resistant to Roseovarius oyster disease, experimental challenge with Vibrio spp. isolates RE22 and RE101, causative agents of bacillary necrosis in Pacific oyster larvae, and the type strain of Roseovarius crassostreae, causative agent of Roseovarius oyster disease. All of the isolates were able to induce significant mortalities in oyster larvae and juveniles. Susceptibility to bacterial challenge in larvae was significantly higher at 25 degrees C than at 20 degrees C. Susceptibility decreased with oyster age; mean survival time ranged from 24 h in oyster larvae to more than 6 wk in juveniles. Significant differences in susceptibility to bacterial challenge were observed between oyster lines; NEHY was the most resistant line overall. Extracellular products (ECPs) from Vibrio sp. RE22 and R. crassostreae, as well as viable bacteria, were toxic to hemocytes from the 3 oyster lines, suggesting that ECPs are involved in pathogenesis and that external and mucosal barriers to infection are major contributors to resistance to bacterial challenge. These protocols will be useful in the elucidation of mechanisms of bacterial pathogenesis and resistance to infection in oysters.  相似文献   

8.
Progeny of eastern oyster, Crassostrea virginica, introduced into France in 1992, were reared in IFREMER facilities to test their growth performances. During the summer of 1993, sporadic mass mortalities (80-90%) occurred among C. virginica spat reared in the IFREMER laboratories in La Tremblade (Charente Maritime, France) and Bouin (Vendée, France). Affected oysters presented mantle retraction and deposition of an anomalous conchiolin layer on the inner surface of the shell. The incidence of oysters with gross signs exceeded 80%. No obvious pathogen was identified in soft tissues by histology and transmission electron microscopy (TEM). However, histological examination showed the presence of anomalous basophilic round structures, 0.5-1 microm in diameter, in gill and mantle connective tissues. These extracellular Feulgen-negative structures reacted positively with the von Kossa stain. TEM examination on mantle and gill samples in diseased spat showed that the basophilic bodies consisted of concentric deposits of an amorphous substance interpreted as containing calcium. These observations may indicate that the mineralization process in spat shells was disturbed without exact determination of the cause. Based on the similarities of the gross signs to those reported in juvenile eastern oysters in the United States, we believe that the cause of the mortalities observed in France was probably the Juvenile Oyster Disease. Moreover, we report for the first time the detection of anomalous amorphous structures in gill and mantle connective tissues associated with mortalities and deposition of an anomalous conchioloin layer on the inner shell surface in C. virginica spat.  相似文献   

9.
In summer 2006 an extensive mortality of Pacific oysters Crassostrea gigas occurred in Lake Grevelingen, the Netherlands. A sample of Pacific oysters was investigated for the presence of shellfish pathogens as potential causes of the mortality. Yellow-green lesions were observed in several oysters upon clinical inspection. Histopathology showed that 6 out of 36 oysters had a suspected bacterial infection, including 4 Nocardia-like infections. Two bacterial species, Vibrio aestuarianus and Nocardia crassostreae, were isolated from haemolymph samples and identified using PCR and sequencing of the 16S rRNA gene. This is the first isolation of N. crassostreae from shellfish in European waters. The near full-length 16S rRNA sequence of this Dutch Nocardia sp. isolate was identical to other known N. crassostreae isolates from the west coast of North America. The primary cause of oyster mortality was thought to be the physiological stress from environmental conditions, including prolonged high water temperatures and low oxygen levels. The multiple bacterial species isolated from the diseased Pacific oysters may have been a secondary cause.  相似文献   

10.
11.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster's cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

12.
Vibrio vulnificus, a normal bacterial inhabitant of estuaries, is of concern because it can be a potent human pathogen, causing septicemia, wound infections, and gastrointestinal disease in susceptible hosts. From May 1989 through December 1990, oysters and/or water were obtained from six areas in the Great Bay estuary of New Hampshire and Maine. Water was also sampled from three freshwater sites that lead into these areas. V. vulnificus was first detected in the estuary in early July and remained present through September. V. vulnificus was isolated routinely during this period from oysters and water of the Squamscott, Piscataqua, and Oyster Rivers but was only isolated twice from the oysters or water of the Great Bay itself. This study determined that there was a strong correlation (by analysis of variance) between temperature, salinity, and the presence of V. vulnificus in water and oysters. However, other unidentified factors appear to influence its presence in certain areas of the estuary.  相似文献   

13.
Vibrio vulnificus, a normal bacterial inhabitant of estuaries, is of concern because it can be a potent human pathogen, causing septicemia, wound infections, and gastrointestinal disease in susceptible hosts. From May 1989 through December 1990, oysters and/or water were obtained from six areas in the Great Bay estuary of New Hampshire and Maine. Water was also sampled from three freshwater sites that lead into these areas. V. vulnificus was first detected in the estuary in early July and remained present through September. V. vulnificus was isolated routinely during this period from oysters and water of the Squamscott, Piscataqua, and Oyster Rivers but was only isolated twice from the oysters or water of the Great Bay itself. This study determined that there was a strong correlation (by analysis of variance) between temperature, salinity, and the presence of V. vulnificus in water and oysters. However, other unidentified factors appear to influence its presence in certain areas of the estuary.  相似文献   

14.
Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 104 to 3.0 × 104 CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 104 and 4.0 × 104 CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 104 CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years.  相似文献   

15.
The strategies used by bacterial pathogens to circumvent host defense mechanisms remain largely undefined in bivalve molluscs. In this study, we investigated experimentally the interactions between the Pacific oyster (Crassostrea gigas) immune system and Vibrio aestuarianus strain 01/32, a pathogenic bacterium originally isolated from moribund oysters. First, an antibiotic-resistant V. aestuarianus strain was used to demonstrate that only a limited number of bacterial cells was detected in the host circulatory system, suggesting that the bacteria may localize in some organs. Second, we examined the host defense responses to V. aestuarianus at the cellular and molecular levels, using flow-cytometry and real-time PCR techniques. We showed that hemocyte phagocytosis and adhesive capabilities were affected during the course of infection. Our results also uncovered a previously-undescribed mechanism used by a Vibrio in the initial stages of host interaction: deregulation of the hemocyte oxidative metabolism by enhancing the production of reactive oxygen species and down-regulating superoxide dismutase (Cg-EcSOD) gene expression. This deregulation may provide an opportunity to the pathogen by impairing hemocyte functions and survival. These findings provide new insights into the cellular and molecular bases of the host-pathogen interactions in C. gigas oyster.  相似文献   

16.
“Seaside Disease” of oysters caused by Minchinia costalis (Haplosporida, Sporozoa) produced annual mortalities on the Seaside of the Delmarva Peninsula along the middle Atlantic Coast from Chesapeake Bay to Delaware Bay, U.S.A. The May–June mortalities occurred from 1959 to 1976 without exception; deaths began in late May, peaked in June, and were usually over by July 1. The pathogen developed rapidly from March to May, and sporulation occurred in connective tissues of all organs in May and June. Exposure to a May–June enzootic was required to obtain infections. The pathogen remained subclinical until late winter of the following year. A sympatric pathogen, Minchinia nelsoni, which kills oysters extensively in lower Chesapeake Bay, was present but caused only minor mortalities. Salinities > 30 parts per thousand seem to favor M. costalis and inhibit M. nelsoni. Prevalences of both diseases in live oysters or gapers are given for 11 of the 18 years monitored.  相似文献   

17.
We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.  相似文献   

18.
19.
Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico.  相似文献   

20.
Vibrio splendidus, strain LGP32, is an oyster pathogen associated with the summer mortalities affecting the production of Crassostrea gigas oysters worldwide. Vibrio splendidus LGP32 was shown to resist to up to 10 µM Cg‐Def defensin and Cg‐BPI bactericidal permeability increasing protein, two antimicrobial peptides/proteins (AMPs) involved in C. gigas immunity. The resistance to both oyster Cg‐Def and Cg‐BPI and standard AMPs (polymyxin B, protegrin, human BPI) was dependent on the ompU gene. Indeed, upon ompU inactivation, minimal bactericidal concentrations decreased by up to fourfold. AMP resistance was restored upon ectopic expression of ompU. The susceptibility of bacterial membranes to AMP‐induced damages was independent of the ompU‐mediated AMP resistance. Besides its role in AMP resistance, ompU proved to be essential for the adherence of V. splendidus LGP32 to fibronectin. Interestingly, in vivo, ompU was identified as a major determinant of V. splendidus pathogenicity in oyster experimental infections. Indeed, the V. splendidus‐induced oyster mortalities dropped from 56% to 11% upon ompU mutation (Kaplan–Meier survival curves, P < 0.01). Moreover, in co‐infection assays, the ompU mutant was out competed by the wild‐type strain with competitive indexes in the range of 0.1–0.2. From this study, ompU is required for virulence of V. splendidus. Contributing to AMP resistance, conferring adhesive properties to V. splendidus, and being essential for in vivo fitness, the OmpU porin appears as an essential effector of the C. gigas/V. splendidus interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号