首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen different monoclonal antibodies, developed against a pseudexin A, B, and C mixture, were screened for linear epitope recognition. Peptides (9-mers) spanning pseudexin B were synthesized on alanine-derivatized polyethylene pins and subsequently probed with antibody. Four antibodies recognized linear epitopes of pseudexin A, pseudexin B, and also nonidentical sequences found in other phospholipases A2 (PLA2s) as determined by enzyme-linked immunosorbent assays. Three antibodies recognized a highly conserved site important in calcium binding and the interlocking of dimeric forms of PLA2. Antibodies neutralizing lethal or enzymatic effects of PLA2 did not recognize linear epitopes.  相似文献   

2.
Fifteen different monoclonal antibodies, developed against a pseudexin A, B, and C mixture, were screened for linear epitope recognition. Peptides (9-mers) spanning pseudexin B were synthesized on alanine-derivatized polyethylene pins and subsequently probed with antibody. Four antibodies recognized linear epitopes of pseudexin A, pseudexin B, and also nonidentical sequences found in other phospholipases A2 (PLA2s) as determined by enzyme-linked immunosorbent assays. Three antibodies recognized a highly conserved site important in calcium binding and the interlocking of dimeric forms of PLA2. Antibodies neutralizing lethal or enzymatic effects of PLA2 did not recognize linear epitopes.  相似文献   

3.
Monoclonal antibodies directed against the haemocyanin of the scorpion Androctonus australis were raised in order to map antigenic determinants (epitopes). The method of mapping employed in this study is molecular immunoelectron microscopy. It consists of a direct electron microscopic observation of antigenic molecules labelled with monoclonal antibodies. The epitopes are then localized in a small region of the external surface of the antigenic molecule whose architecture and quaternary structure are well known. Six monoclonal antibodies have been selected and epitopes have been circumscribed within a small area of one subunit among the 24 subunits composing the whole antigenic molecule.  相似文献   

4.
To analyze the immunochemical structure ofEscherichia coli ribosomal protein S13 and its organizationin situ, we have generated and characterized 22 S13-specific monoclonal antibodies. We used a competitive enzyme-linked immunosorbent assay to divide them into groups based on their ability to inhibit binding of one another. The discovery of five groups with distinct binding properties suggested that a minimum of five distinct determinants on S13 are recognized by our monoclonal antibodies. The locations of the epitopes detected by these monoclonal antibodies have been mapped on S13 peptides. Three monoclonal antibodies bind a S13 C-terminal 34-residue segment. All the other 19 monoclonal antibodies bind a S13N-terminal segment of about 80 residues. The binding sites of these 19 monoclonal antibodies have been further mapped to subfragments of peptides. Two monoclonal antibodies recognized S131–22; three monoclonal antibodies bound to S131–40; the binding sites of three other antibodies have been located in S1323–80, with epitopes possibly associated with residues 40–80. The remaining 11 monoclonal antibodies did not bind to these subfragments. These data provide molecular basis to the structure of S13 epitopes, whosein situ accessibility may reveal the S13 organization on the ribosome.  相似文献   

5.
Many monoclonal antibodies that react with the lacto-N-fucopentaose III (LNF III) antigenic determinant, Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-3Gal beta 1-4Glc, have been described recently. The terminal trisaccharide of this determinant, fucosyllactosamine, is present on glycolipids and glycoproteins and on the surface of granulocytes, monocytes, and other cells. To study the structural and genetic diversity of these antibodies, syngeneic anti-idiotypic monoclonal antibodies were produced in BALB/c mice against PMN 6, a monoclonal antibody directed against this sequence. Anti-idiotypic antibodies 6B1 and 6C4 reacted with 50% of a panel of 20 anti-LNF III monoclonal antibodies, whereas 6A3 reacted strongly only with PMN 6. This indicates that the determinants recognized by 6C4 and 6B1 represent major cross-reactive idiotopes of this family of antibodies. The binding of idiotypic antibodies to a glycolipid bearing this antigenic determinant was completely inhibited by the three anti-idiotypic antibodies, 6A3, 6B1, and 6C4. The idiotopes could be demonstrated on the heavy chain of the monoclonal antibodies by an antibody transfer technique when mild reducing conditions were employed, but a high concentration of reducing agent destroyed the idiotypic determinants. This suggests that the anti-idiotypic antibodies recognize conformational structures expressed on the heavy chain molecules. The binding of 18 monoclonal antibodies to two glycolipid antigens and to a fucosyllactosamine-bovine serum albumin conjugate was compared. Antibodies that possessed the 6C4 cross-reactive idiotope bound to fucosyllactosamine-bovine serum albumin more weakly than idiotype-negative antibodies (p = 0.001). This suggests that the 6C4-positive antibodies might represent germline structures.  相似文献   

6.
Twenty-one monoclonal antibodies were raised against the aspartate aminotransferase-P2 isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. Induction of this isoenzyme is positively correlated with the onset of N2 fixation in effective root nodules and is associated with the assimilation of ammonia by the plant in the Rhizobium-legume symbiosis. The monoclonal antibodies produced were all of the IgG class, recognized five different epitopes on the protein, and represented greater than 90% of the available epitopes. These epitopes were not unique to lupin nodule aspartate aminotransferase-P2 but were shown to be present on the enzyme from tobacco leaves and potato. Four of the epitopes were conformational with a fifth epitope recognized by the appropriate monoclonals in both its native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium Iupini NZP2257 extracts. Antibodies against two epitopes showed some cross-reaction with the constitutive aspartate aminotransferase-P1 isoenzyme also found in lupin root nodules. However, affinity of these monoclonals for AAT-P1 was three orders of magnitude lower than for AAT-P2. Monoclonals against the other epitopes appeared to be specific for aspartate aminotransferase-P2.  相似文献   

7.
Antibodies directed against E. coli ribosomal protein S1 were used in immunoblotting assays to search for an S1-like protein in the ribosome of spinach chloroplast. An immunological cross-reaction was reproducibly detected on the blots and inhibition experiments have demonstrated its specificity. The chloroplastic ribosomal protein which has epitopes common to antigenic determinants of the E. coli protein S1 was identified as being protein S2/S3.  相似文献   

8.
Twenty-four monoclonal antibodies (mAbs) against group B Neisseria meningitidis surface antigens were analyzed by immunoenzymatic assays and by a bactericidal test. Two mAbs were specific to polysaccharide B and one to lipopolysaccharide. The others were directed against outer membrane proteins ranging in molecular mass from 25 to 200 kDa. The outer membrane protein epitopes recognized by the mAbs were not conformational and were located on the outer surface of the microorganism. Linear epitopes on the class 5 protein, exposed on the surface of the membrane, were able to induce bactericidal antibodies to the homologous strain. The susceptibility of Neisseria meningitidis to these antibodies was unchanged when this organism was cultivated under conditions of iron depletion. These results demonstrate that peptides derived from class 5 proteins are potentially important in synthetic peptide or in recombinant protein vaccines containing linear bactericidal epitopes.  相似文献   

9.
In order to produce monoclonal antibodies directed against different epitopes of the neurohypophyseal hormone vasopressin, the hormone was coupled to carrier proteins via photoreactive groups at different positions in the vasopressin sequence: [2-(4-azidophenylalanine), 8-arginine]vasopressin (peptide P1, photoreactive group at position 2) and desamino-[8-N6-(4-azidophenylamidino)lysine]vasopressin (peptide P2, photoreactive group at position 8) were conjugated to thyroglobulin by flash photolysis. Monoclonal antibodies against these conjugates bound ([3H]8-arginine]vasopressin with dissociation constants ranging over 40-400 nM. Epitope analysis by means of competitive ELISA showed that the monoclonal antibody obtained with peptide P1 as hapten was directed against the C-terminal acyclic tripeptide when its conformation was stabilized by interaction with the disulphide-linked cyclic hexapeptide. In contrast, the epitope analysis of three monoclonal anti-(peptide P2) antibodies demonstrated that they recognized antigenic determinants in the cyclic hexapeptide ring, mainly the hydrophobic surface formed by Tyr2 and Phe3. Our results suggest that monoclonal antibodies against different epitopes in small peptide hormones can be generated selectively by using photoreactive peptides in such a way that different antigenic sites are exposed in the hapten-carrier conjugate.  相似文献   

10.
Two human and twelve murine monoclonal antibodies directed against the main bee venom allergen phospholipase A2 (PLA) were evaluated for their fine specificity of binding to antigen and their ability to inhibit the enzymatic activity of the antigen. Antibodies were induced by natural exposure of beekeepers to bee venom or immunization of mice via different methods. Both human monoclonal antibodies (hmAbs) were previously shown to recognize the native three-dimensional conformation of PLA and are directed against discontinuous epitopes which include lysine residue at position 25 as a contact residue. In contrast, six of the murine monoclonal antibodies (mmAbs) bind to the denatured structure of the protein as determined by enzyme-linked immunosorbent assay. The epitopes recognized are located near the C-terminal end (n=8), in the centre of the polypeptide (n=1), near the N-terminal end (n=1) or include the carbohydrate part (n=2) of the PLA molecule. The capacity of the antibodies to modify the enzymatic activity was also determined. The hmAbs significantly inhibit the enzyme (70–79%), whereas the mmAbs produced various degrees of inhibition (39–100%). Since the X-ray structure of PLA is known, the epitopes can be visualized in the context of the three-dimensional structure of the antigen. A qualitative correlation was found between the location of epitopes and the inhibition pattern. Strong inhibition was seen with those antibodies that recognize epitopes that lie on the surface of the enzyme that is thought to contact the phospholipid bilayer. The results show that even though both hmAbs and most mmAbs inhibit the enzymatic activity of PLA, the antigen-binding properties of antibodies from different species raised after different routes of immunization differ significantly. Thus, detailed epitope mapping studies using murine antibodies prepared by artificial immunization may have limited value in predicting epitope patterns relevant to an antibody response to allergens in humans naturally exposed to antigen/allergen. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Monoclonal antibodies were raised against human thrombin-antithrombin III complex by a hybridoma technique. Among them, five monoclonal antibodies, designated as JITAT-4, -14, -16, -17 and -19, were found to react with thrombin-antithrombin III, but not with its nascent components, α-thrombin or antithrombin III. Their respective immunoglobulin classes are IgG1 for JITAT-16 and -19, and IgG2a for JITAT-4, -14 and -17. Besides the thrombin-antithrombin III complex, they all bound to the Factor Xa-antithrombin III complex and the active-site-cleaved two-chain antithrombin III as well. Moreover, the reactivity of these two antibodies to the neoantigens was not affected by heparin, suggesting that their epitopes are independent of heparin-induced conformational changes of antithrombin III. Two of them, JITAT-16 and -17, were categorized as high-affinity antibodies to thrombin-antithrombin III complex, the dissociation constants being 6.7 nM and 4.8 nM, respectively. However, they do not share antigenic determinants. These monoclonal antibodies may allow us to explore more precisely the reaction between antithrombin III and thrombin or its related enzymes.  相似文献   

12.
Monoclonal antibodies were raised against Antigen P1, the major allergen of the house dust mite (Dermatophagoides pteronyssinus). The majority were Antigen P1 specific, isotype IgG1, and did not react with a comparable D. farinae allergen. These antibodies bound 38 to 50% of 125I Antigen P1 in antigen-binding assays (titer greater than or equal to 1/1,000,000), and the quantities of IgG antibody in ascites were 2 to 4 logs greater than those in polyclonal mouse antiserum or in serum from a mite-allergic patient. Two IgM antibodies showed weak binding to Antigen P1 but reacted strongly with D. pteronyssinus in enzyme immunoassay (titer greater than or equal to 1/100,000). Assessments of the specificity of the IgG antibodies by using two inhibition radioimmunoassays suggested that they were directed against two different epitopes. Antibodies 10B9 F6 and 5H8 C12 were purified by preparative isoelectric focusing (isoelectric points of pI 6.25 and 7.4, respectively) and radiolabeled with 125I. Cross-inhibition experiments, using ascites dilutions to inhibit binding of each radiolabeled antibody to Antigen P1, confirmed that these antibodies recognized two distinct epitopes. Analysis of antibodies from 39 clones/hybrids showed that the majority were directed against the same epitopes as either 10B9 F6 or 5H8 C12 (3 out of 39 [8%] and 29 out of 39 [74%], respectively). None of the monoclonal antibodies significantly inhibited (greater than 10%) human IgE binding to Antigen P1 in the radioallergosorbent test. However, 12 of 14 sera from mite allergic patients inhibited binding by the monoclonal antibodies. One serum from a mite-allergic patient inhibited binding of both 10B9 F6 and 5H8 C12 by greater than 85% and showed parallel inhibition curves. The results suggest that these monoclonal antibodies could be used to assay Antigen P1 in both D. pteronyssinus and house dust extracts. It should also be possible to use monoclonal antibodies in inhibition assays to define the antigenic/allergenic determinants recognized by human IgG and IgE antibodies on this mite allergen.  相似文献   

13.
Patients with SLE develop IgM autoantibodies to different isoforms of CD45, the major surface membrane protein tyrosine phosphatase on lymphocytes and other nucleated hemopoietic cells. Because such autoantibodies could have a potential role in the development of immune dysfunction in this disorder, we performed a series of experiments to characterize their antigenic specificity further. Blots of recombinantE. coli fusion proteins encoded by exons 3–7 of the p220 and p180 isoforms were uniformly non-reactive with SLE IgM, suggesting that anti-CD45 autoantibodies in SLE are directed against conformational and/or carbohydrate epitopes, rather than linear polypeptide epitopes. This issue was examined further using chemically and enzymatically modified CD45 purified from T cells by lectin affinity chromatography as substrates. Treatment of CD45 with 25 mM sodium-m-periodate, sufficient to abrogate binding to various lectins, abolished the reactivity with SLE anti-CD45 autoantibodies. On the other hand, digestion of CD45 with neuraminidase enhanced the binding of anti-CD45 autoantibodies from some of the SLE sera. This result probably reflects decreased steric hindrance or charge repulsion because the binding of mouse monoclonal antibodies directed against linear polypeptide epitopes of CD45 was similarly enhanced. Digestion of CD45 with N-glycosidase F had no effect on autoantibody staining. Taken together, these data suggest that IgM anti-CD45 autoantibodies in SLE recognize non-sialylated carbohydrate determinants in the highly O-glycosylated polymorphic domains of CD45.Abbreviations SLE systemic lupus erythematosus - SBA soybean agglutinin - RCAI Ricinus communis agglutinin - SNL Sambucus nigra lectin - MBP maltose binding protein - mAb monoclonal antibody - WGA wheat germ agglutinin  相似文献   

14.

Background

Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were generated against it. The analysis of the reactivity of those monoclonal antibodies suggested that the N-terminal domain might contain more antigenic epitopes than the C-terminal domain. In the same study, two broadly reactive monoclonal antibodies were observed to react with genogroup I recombinant protein.

Results

In the present study, we used the recombinant capsid protein of genogroup I and characterized the obtained 17 monoclonal antibodies by using 19 overlapping fragments. Sixteen monoclonal antibodies recognized sequential epitopes on three antigenic regions, and the only exceptional monoclonal antibody recognized a conformational epitope. As for the two broadly reactive monoclonal antibodies generated against genogroup II, we indicated that they recognized fragment 2 of genogroup I. Furthermore, genogroup I antigen from a patient's stool was detected by sandwich enzyme-linked immunosorbent assay using genogroup I specific monoclonal antibody and biotinated broadly reactive monoclonal antibody.

Conclusion

The reactivity analysis of above monoclonal antibodies suggests that the N-terminal domain may contain more antigenic epitopes than the C-terminal domain as suggested in our previous study. The detection of genogroup I antigen from a patient's stool by our system suggested that the monoclonal antibodies generated against E. coli expressed capsid protein can be used to detect genogroup I antigens in clinical material.  相似文献   

15.
Summary Eleven monoclonal antibodies were identified that recognized eel electroplax sodium channels. All the monoclonal antibodies specifically immunostained the mature TTX-sensitive sodium channel (M r 265,000) on immunoblots. None of the monoclonal antibodies would precipitate the in vitro translated channel core polypeptide in solution. One monoclonal antibody, 3G4, was found to bind to an epitope involving terminal polysialic acids. Extensive digestion of the channel by the exosialidase, neuraminidase, or partial polysialic acid removal bythe endosialidase, endo-N-acetylneuraminidase, destroy the 3G4 epitope, 3G4 is, therefore, a highly selective probe for the post-translationally attached polysialic acids. Except for this monoclonal antibody, the epitopes recognized by the remaining antibodies were highly resistant to extensive N-linked deglycosylation. Thus, the monoclonal antibodies may be directed against unique post-translationally produced domains of the electroplax sodium channel, presumably sugar groups that are abundant on this protein (Miller, J.A., Agnew, W.S., Levinson, S.R. 1983.Biochemistry 22:462–470). These monoclonal antibodies should prove useful as tools to study discrete post-translational processing events in sodium channel biosynthesis.  相似文献   

16.
To analyze the immunochemical structure ofEscherichia coli ribosomal protein S13 and its organizationin situ, we have generated and characterized 22 S13-specific monoclonal antibodies. We used a competitive enzyme-linked immunosorbent assay to divide them into groups based on their ability to inhibit binding of one another. The discovery of five groups with distinct binding properties suggested that a minimum of five distinct determinants on S13 are recognized by our monoclonal antibodies. The locations of the epitopes detected by these monoclonal antibodies have been mapped on S13 peptides. Three monoclonal antibodies bind a S13 C-terminal 34-residue segment. All the other 19 monoclonal antibodies bind a S13N-terminal segment of about 80 residues. The binding sites of these 19 monoclonal antibodies have been further mapped to subfragments of peptides. Two monoclonal antibodies recognized S131–22; three monoclonal antibodies bound to S131–40; the binding sites of three other antibodies have been located in S1323–80, with epitopes possibly associated with residues 40–80. The remaining 11 monoclonal antibodies did not bind to these subfragments. These data provide molecular basis to the structure of S13 epitopes, whosein situ accessibility may reveal the S13 organization on the ribosome.  相似文献   

17.
A monoclonal mouse antibody directed against rabbit IgG has been conjugated with horseradish peroxidase and used to identify immunoprecipitates which contain rabbit antibodies. By combining a specific rabbit antisera with a general antiserum from another species (e.g., goat antiserum against human serum), immunoprecipitates containing the antigen(s) recognized by the rabbit antibodies have been selectively identified by colorimetric development of peroxidase activity. Since the monoclonal antibody is specific for rabbit IgG and nonprecipitating, the peroxidase conjugate can be included in the agarose with the primary antisera.  相似文献   

18.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

19.
Species of the fungal generaAspergillus andPenicillium produce immunologically active extracellular polysaccharides (EPS) in which galactofuranose residues are immunodominant. The antigenic determinant of the EPSA. fumigatus, A. niger andP. digitatum could be removed by acid hydrolysis. Due to the hydrolysis of the EPS the immunological reaction between IgG anti-native EPS and hydrolysed EPS disappeared. Antibodies raised in rabbits against the acid hydrolysed EPS revealed new antigenic determinants that were exposed as a result of the acid hydrolysis. Immunological inhibitory experiments showed that the antibodies were no longer directed to galactofuranose residues.Enzyme Linked Immunosorbent Assay, carried out with antibodies raised against the acid hydrolysed EPS showed that the antibodies against the acid hydrolysed EPS were more species specific in comparison with the antibodies against the native EPS.  相似文献   

20.
Immunization of rabbits with outer membranes (OM) of Neisseria gonorrhoeae produced antibodies directed against outer-membrane proteins PI and PIII. The antibodies directed against PIII reacted equally well on Western blots with all strains tested, but antibodies directed against PI reacted only with the homologous strain. When purified PIB was used for immunization the immune response was quite different: the sera obtained reacted with both homologous and heterologous PIB types and also reacted with strains expressing PIA. Western blotting of peptides produced by sequential cleavage of PIB revealed that the antigenic determinants recognized by anti-OM sera were predominantly located in the central surface-exposed region of PIB, as is the epitope recognized by the protective anti-PIB monoclonal antibody SM24. In contrast antibodies produced by immunization with purified PI reacted with antigenic determinants in the N-terminal portion of PIB. Nevertheless these determinants are accessible to immune attack on the native protein since the anti-PI sera were opsonic and were strongly bactericidal for both PIA- and PIB-expressing strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号