首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

2.
A crtD (1-HO carotenoid 3,4-dehydrogenase gene) homolog from marine bacterium strain P99-3 included in the gene cluster for the biosynthesis of myxol (3,4-didehydro-1,2-dihydro-β,ψ-carotene-3,1,2-triol) was functionally identified. The P99-3 CrtD was phylogenetically distant from the other CrtDs. A catalytic feature was its high activity for the monocyclic carotenoid conversion: 1-HO-torulene (3,4-didehydro-1,2-dihydro-β,ψ-caroten-1-ol) was prominently formed from 1-HO-γ-carotene (1,2-dihydro-β,ψ-caroten-1-ol) in Escherichia coli with P99-3 CrtD, indicating that this enzyme has been highly adapted to myxol biosynthesis. This unique type of crtD is a valuable tool for obtaining 1-HO-3,4-didehydro monocyclic carotenoids in a heterologous carotenoid production system.  相似文献   

3.
The crystal and the molecular structure of 4,1′,6′-trichloro-4,1′,6′-trideoxy-galacto-sucrose (TGS) was determined by X-ray analysis at 294 K. Crystals of TGS are orthorhombic, space group P212121, with a = 7.318(3), b = 12.027(4), c = 18.136(5) Å, V = 1596(1) Å3, Z = 4; Dx = 1.655 g.cm-3, λ(MoK) = 0.71073 Å, μ(MoK) = 5.44 cm-1, F(000) = 816. The X-ray intensities of 2649 reflections with I 2.5σ(I) were measured with Zr-filtered MoK-radiation. The structure was solved by the Patterson procedure and refined by full-matrix least-squares to a final R-value of 0.0298. Large conformational differences between TGS and sucrose were observed, particularly in the conformation of the glycosidic linkage. These differences originate from chlorine substitution, which affects intramolecular hydrogen bonding and sweet-taste glucophores.  相似文献   

4.
In the present paper, the modulation of the basolateral membrane (BLM) Na+-ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1–7) (Ang-(1–7)) was evaluated. Ang II and Ang-(1–7) inhibit the Na+-ATPase activity in a dose-dependent manner (from 10−11 to 10−5 M), with maximal effect obtained at 10−7 M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1–7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10−8 M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10−12–10−5 M) losartan or (10−10–10−7 M) A779, selective antagonists for AT1 and AT(1–7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3′,5′-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10−9 M guanosine 5′-O-(2-thiodiphosphate) (GDPβS; an inhibitor of the G protein activity), and mimicked by 10−10 M guanosine 5′-O-(3-thiotriphosphate) (GTPγS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10−10–10−6 M) cAMP has a similar and non-additive effect to Ang II and Ang-(1–7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1–7); and (6) both angiotensins stimulate PKA activity.  相似文献   

5.
The reaction of N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) with VCl3 in CH3CN yields Cl3V(tpen)VCl3 which was hydrolyzed in water in the presence of oxygen affording [V2O2(μ-OH)2(tpen)]I2·2H2O, the crystal structure of which has been determined. Asyn-{OV(μ-OH)2VO}2+ core has been identified where the V(IV) centers are antiferromagnetically coupled (J = −150 cm−1;g = 1.80).  相似文献   

6.
A reduction of previously reported 2-methoxyethyl and 2-methylthioethyl functionalized zirconocenedichlorides (η5-C5Me4CH2CH2EMe)(η5-C5Me5)(ZrCl2 (E = O, S) and (η5-C5Me4CH2CH2EMe)(η5-C5Me4CH2CH2E′Me)ZrCl2 (E = O, S; E′ = O, S) with Mg/Hg in THF leads unexpectedly to the products of O---Me and S---Me bond cleavage (η5,σ-C5Me4CH2CH2E)(η5-C5Me5)ZrMe (E = O, S), (η5,σ-C5Me4CH2CH2E)(η5-C5Me4CH2CH2E′Me)ZrMe (E = O, S; E′ = O), and (η5,σ-C5Me4CH2CH2S)2Zr respectively. The crystal structure of (η5,σ-C5Me4CH2CH2S)2Zr was established by X-ray analysis. At that same time the reduction of (ηsu5-C5Me4CH2CH2EMe)(η5-C5Me5)ZrCl2 (E> = O, S) under 1 atm of CO gives either only the dicarbonyl derivative (η5-C5Me4CH2CH2EMe) (η5-C6Me5)Zr(CO)2 (E = O) or a complex mixture of products (E = S).  相似文献   

7.
Reaction of [Au(η2-Ar){CH2C(O)R}Cl] (Ar=C6H4N=N- Ph-2, R=Me, C6H2(OMe)3-3′,4′,5′; Ar=C6H3(N=NC6H4Me- 4′)-2, Me-5, R=Me) with PPh3 and NaClO4·H2O (1:2:1) at room temperature, leads to reductive elimination giving [Au(PPh3)2]ClO4 and the corresponding carbon-carbon coupling product ArCH2C(O)R. A similar process takes place when complexes [Au(η2-Ar){CH2C(O)R}(PPh3)Cl] are refluxed in tetrahydrofuran, through elimination of [Au(PPh3)Cl].  相似文献   

8.
Rapid reactions occur between [OsVI(tpy)(Cl)2(N)]X (X = PF6, Cl, tpy = 2,2′:6′,2″-terpyridine) and aryl or alkyl phosphi nes (PPh3, PPh2Me, PPhMe2, PMe3 and PEt3) in CH2Cl2 or CH3CN to give [OsIV(tpy)(Cl)2(NPPh3)]+ and its analogs. The reaction between trans-[OsVI(tpy)(Cl)2(N)]+ and PPh3 in CH3CN occurs with a 1:1 stoichiometry and a rate law first order in both PPh3 and OsVI with k(CH3CN, 25°C) = 1.36 ± 0.08 × 104 M s−1. The products are best formulated as paramagnetic d4 phosphoraniminato complexes of OsIV based on a room temperature magnetic moment of 1.8 μB for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6), contact shifted 1H NMR spectra and UV-Vis and near-IR spectra. In the crystal structures of trans-[OsIV(tpy)(Cl)2( NPPh3)](PF6)·CH3CN (monoclinic, P21/n with a = 13.384(5) Å, b = 15.222(7) Å, c = 17.717(6) Å, β = 103.10(3)°, V = 3516(2) Å3, Z = 4, Rw = 3.40, Rw = 3.50) and cis-[OsIV(tpy)(Cl)2(NPPh2Me)]-(PF6)·CH3CN (monoclinic, P21/c, with a = 10.6348(2) Å, b = 15.146(9) ÅA, c = 20.876(6) Å, β = 97.47(1)°, V = 3334(2) Å3, Z = 4, R = 4.00, Rw = 4.90), the long Os-N(P) bond lengths (2.093(5) and 2.061(6) Å), acute Os-N-P angles (132.4(3) and 132.2(4)°), and absence of a significant structural trans effect rule out significant Os-N multiple bonding. From cyclic voltammetric measurements, chemically reversible OsV/IV and OsIV/III couples occur for trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) in CH3CN at +0.92 V (OsV/IV) and −0.27 V (OsIV/III) versus SSCE. Chemical or electrochemical reduction of trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) gives isolable trans-OsIII(tpy)(Cl)2(NPPh3). One-electron oxidation to OsV followed by intermolecular disproportionation and PPh3 group transfer gives [OsVI(tpy)Cl2(N)]+, [OSIII(tpy)(Cl)2(CH3CN)]+ and [Ph3=N=PPh3]+ (PPN+). trans-[OsIV(tpy)(Cl)2(NPPh3)](PF6) undergoes reaction with a second phosphine under reflux to give PPN+ derivatives and OsII(tpy)(Cl)2(CH3CN) in CH3CN or OsII(tpy)(Cl)2(PR3) in CH2Cl2. This demonstrates that the OsVI nitrido complex can undergo a net four-electron change by a combination of atom and group transfers.  相似文献   

9.
The Dmt-Tic pharmacophore exhibits potent δ-opioid receptor antagonism. Analogues with substitutions in the second pharmacophore with (1, 1′) or without a COOH function (2–9) were synthesized: several had high δ affinity (1′, 2, 7, and 9), but exhibited low to non-selectivity toward μ receptors similar to H-Dmt-Tic-amide and H-Dmt-Tic-ol. Functional bioactivity indicated high δ antagonism (pA2 7.4–7.9) (1′, 2, and 9) and modest μ agonism, pEC50 (6.1–6.3) (1′, 2, 8, and 9), but with Emax values analogous to dermorphin. These Dmt-Tic analogues with mixed δ antagonist/μ agonist properties would appear to be better candidates as analgesics than pure μ agonists.  相似文献   

10.
All-E-(3R,6′R)-3-hydroxy-3′,4′-didehydro-β,γ-carotene (anhydrolutein I) and all-E-(3R,6′R)-3-hydroxy-2′,3′-didehydro-β,ε-carotene (2′,3′-anhydrolutein II) have been isolated and characterized from extracts of human plasma using semipreparative high-performance liquid chromatography (HPLC) on a C18 reversed-phase column. The identification of anhydroluteins was accomplished by comparison of the UV-Vis absorption and mass spectral data as well as HPLC-UV-Vis-mass spectrometry (MS) spiking experiments using fully characterized synthetic compounds. Partial synthesis of anhydroluteins from the reaction of lutein with 2% H2SO4 in acetone, in addition to anhydrolutein I (54%) and 2′,3′-anhydrolutein II (19%), also gave (3′R)-3′-hydroxy-3,4-dehydro-β-carotene (3′,4′-anhydrolutein III, 19%). While anhydrolutein I has been shown to be usually accompanied by minute quantities of 2′,3′-anhydrolutein II (ca. 7–10%) in human plasma, 3′,4′-anhydrolutein III has not been detected. The presence of anhydrolutein I and II in human plasma is postulated to be due to acid catalyzed dehydration of the dietary lutein as it passes through the stomach. These anhydroluteins have also been prepared by conversion of lutein diacetate to the corresponding anhydrolutein acetates followed by alkaline hydrolysis. However, under identical acidic conditions, loss of acetic acid from lutein diacetate proceeded at a much slower rate than dehydration of lutein. The structures of the synthetic anhydroluteins, including their absolute configuration at C(3) and C(6′) have been unambiguously established by 1H NMR and in part by 13C NMR, and circular dichroism.  相似文献   

11.
The first examples of binary palladium(II) derivatives of unsaturated carboxylic acids are reported. It was found that the interaction of Pd3(μ-OAc)6 with the ,β-unsaturated 1-methylcrotonic (tiglic) and crotonic acids leads to the corresponding carboxylates of composition Pd3[μ-O2CC(R′) = CHMe]6, where R′ = Me (1) or H (2). The new compounds have been characterized by elemental analysis, solid and solution IR, 1H and 13C NMR, and ESI mass spectrometry. The crystal structure of 1 has been determined. This molecule displays a central Pd3 cyclic core with Pd–Pd distances of 3.093–3.171 Å. Each Pd–Pd bond is bridged by a pair of carboxylate ligands, one above and the other below the Pd3 plane, providing a square planar coordination for each Pd atom in an approximate D3h overall symmetry arrangement. Solution spectroscopic data show that the bridging η112 interaction of the carboxylates of 1 and 2 is readily displaced, with a change of the ligand to the terminal (η1) coordination mode.  相似文献   

12.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

13.
The cationic monoalkylated derivatives of the well-known metalloligand [Pt2(μ-S)2(PPh3)4], viz. [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = n-Bu, CH2Ph) are themselves able to act as metalloligands towards the Ph3PAu+ and R′Hg+ (R′ = Ph or ferrocenyl) fragments, by reaction with Ph3PAuCl or R′HgCl, respectively. The resulting dicationic products [Pt2(μ-SR)(μ-SAuPPh3)(PPh3)4]2+ and [Pt2(μ-SR)(μ-SHgR′)(PPh3)4]2+ are readily isolated as their hexafluorophosphate salts, and have been fully characterised by spectroscopic techniques and an X-ray structure determination on [Pt2(μ-SR)(μ-SHgFc)(PPh3)4](PF6)2.  相似文献   

14.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

15.
16.
The preparation of N-, S- and O-donor ligand adducts with CuX+(HX=6-methyl-2-formylpyridinethiosemicarbazone (6HL); 2-formylpyridine-2-methylthiosemicarbazone (2′L); 2-formylpyridine-4′-methylthiosemicarbazone (4′HL)) is described. The N-donors, 2,2′-bipyridyl (bipy), 4-dimethylaminopyridine (dmap) give the complexes [Cu(6L)(bipy)]PF6, [Cu(6L)(bipy)]Cl·5H2O, [Cu(4′L)(bipy)]PF6, [Cu(6L)(dmap)2]PF6·2.5 H2O and [Cu(4′L)(dmap)2]PF6·H2O which have been characterized by physical and spectroscopic techniques. Pentafluorothiophenolate (pftp) gives S-donor complexes [CuX(pftp)] (X=6L and 4′L) and thiolato co-ordination is proposed on the basis of spectroscopic evidence. Paratritylphenolate (ptp) and HPO2−4 give O-donor complexes [Cu(6L)(ptp)], [Cu(4′L)(ptp)], [{Cu(6L)}2HPO4]·4H2O, and [{Cu(4L)}2HPO4]·5H2O which have been characterized by physical and spectroscopic techniques, as have the precursor complexes [Cu(6L)(CH3COO)]·H2O, [Cu(4′L)(CH3COO)], Cu(6HL)(CF3COO)](CF3COO)·0.5H2O, [Cu(4′HL)(CF3COO)](CF3COO), [Cu(2′L)Cl2] and [Cu(2′L)(NO3)2]. Protonation constants for the ligands and some of their complexes have been determined. 2-Formylpyridinethiosemicarbazone (HL) complexes of silver, gold, zinc, mercury, cadmium and lead are also discussed. Cytotoxicity against the human tumor cell line HCT-8 and antiviral data for selected compounds are presented.  相似文献   

17.
The reaction of benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-β-lactoside with 1,11-ditosyloxy-3,6,9-trioxaundecane gave benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-3,2′-O--(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (2, 47%). Acid hydrolysis of 2 and condensation of the product with 1,14-ditosyloxy-3,6,9,12-tetra-oxatetradecane afforded benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-(3,6,9,12-tetraoxa-tetradecane-1,14-diyl)-3,2′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (29%). Similarly, the reaction of benzyl 2,6,2′,4′,6′-penta-O-benzyl-β-lactoside with Ts[OCH2CH2]4OTs gave benzyl 2,6,2′,4′,6′-penta-O-benzyl-3,3′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (78%). 1H-N.m.r. spectroscopy has been used to study the formation of host-guest complexes with some of these macrocyclic compounds and benzyl ammonium thiocyanate.  相似文献   

18.
The reaction between [(η6-p-cymene)Ru(H2O)3]X2 and 4,7-phenanthroline (phen) leads to the formation of the rectangular tetranuclear complexes [(η6-p-cymene)4Ru4(μ-4,7-phen-N4,N7)2(μ-OH)4]X4 (X = NO3, 1a; SO3CF3, 1b) which have been structurally characterised by X-ray crystallography. 1H NMR spectroscopic studies suggest the presence of a partially dissociated dinuclear species of type [(η6-p-cymene)2Ru2(μ-4,7-phen-N4,N7)(solv)4]4+ in equilibrium with the tetranuclear cyclic species found in the solid state. The temperature effect for this equilibrium was studied by variable temperature 1H NMR experiments in D2O and MeOD. The results reveal that the proportion of the tetranuclear species increases with the polarity of the solvent which favour stacking interactions between the phenanthroline moieties. In addition, the reactivity of the tetranuclear species towards the nucleosides guanosine (Guo), cytidine (Cyt), 2′-deoxythymidine (Thy) and 2′-deoxyadenosine (dAdo) has been monitored by 1H NMR as a potential model for the interaction of the 1 species with the probable DNA target. The results reveal that the 1 systems are able to bind the nucleobases endocyclic nitrogen atoms of Guo Cyt, and dAdo.  相似文献   

19.
The crystal structures of Li[Fe(trtda)]·3H2O and Na[Fe(eddda)]·5H2O (trtda = trimethylenediaminetetraacetate and eddda = ethylenediamine-N,N′-diacetate-N,N′-di-3-propionate) have been determined by single crystal X-ray diffraction techniques. The former crystal was monoclinic with the space group P21/n,a = 17.775(3),b = 10.261(1),c = 8.883(2)Å, β = 95.86(4)° and Z = 4. The latter was also monoclinic with the space group P21/n,a = 6.894(2),b = 20.710(6),c = 13.966(3)Å, β = 101.44(2)° and Z = 4. Both complex anions were found to adopt an octahedral six-coordinated structure with all of six ligand atoms of trdta4− or eddda4− coordinated to the Fe(III) ion, unlike the corresponding edta4− complex which is usually seven-coordinate with the seventh coordination site occupied by H2O. Of the three geometrical isomers possible for the eddda complex, the trans(O5) isomer was actually found in the latter crystal. Factors determining the structural types of metal–edta complexes are discussed in detail.  相似文献   

20.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号