首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clone of cells derived from a continuous line of cat cells (CCC) spontaneously produced an RNA C-type virus (CCC virus) which did not have the group-specific antigen of the standard strains of feline leukemia viruses but did have that of the RD-114 virus. Single-hit infection of a virus yielding CCC cell with only the feline leukemia virus pseudotype of murine sarcoma virus [MSV(FeLV)] resulted in the release of a pseudotype of MSV coated with the CCC virus envelope. Host range, transmission of virus, helper functions, interference properties, and specific neutralization showed that the CCC and the RD-114 isolates as well as their respective MSV pseudotypes are closely similar if not identical. Parental, virus-negative cells frozen before the existence of RD-114 were chemically induced to yield CCC-like virus de novo. Infection of susceptible human cells with the chemically induced virus resulted in interference with the CCC virus pseudotype of MSV but not with the FeLV pseudotype of MSV.  相似文献   

2.
The regions of sequence homology and nonhomology between the RNA genomes of RD-114 and baboon endogenous type C viruses have been mapped by an electron microscope heteroduplex study. Short complementary DNA (cDNA) copies (approximately 150 to 200 nucleotides in length) of RD-114 RNA were prepared by an endogenous synthesis; labels of polydeoxythymidylic acid [poly(dT)] were attached to the 3' ends of the cDNA molecules by a reaction catalyzed by deoxynucleotidyl terminal transferase. The cDNA-poly(dT) was hybridized to RD-114 RNA and to baboon viral RNA dimer (50 to 70S) units, and the position- of the poly(dT) labels were observed by electron microscopy. With RD-114, labels were distributed uniformly along the genome. With baboon virus RNA (monomer length, 9.5 kilobases [kb]), the regions of high homology with RD-114 cDNA were observed to lie in the intervals from 1.5 to 2.5 kb and from 3.7 to 5.5 kb from the 5' end. The relations of these heteroduplex maps to the known antigenic similarities and differences among the several viral proteins and to the genetic maps of the viruses are discussed.  相似文献   

3.
The results of molecular hybridization experiments have demonstrated that the RNA genome of RD-114 virus has extensive nucleotide sequence homology with the RNA genome of Crandell virus, an endogenous type C virus of cats, but only limited homology with the RNA genomes of feline sarcoma virus and feline leukemia virus. The genomic RNAs of RD-114 virus and Crandell virus also had identical sedimentation coefficients of 50S. A structural rearrangement of genomic RNA did not exist within released RD-114 virions, whereas a structural rearrangement of genomic RNA did occur within feline sarcoma virions and feline leukemia virions after release from virus-producing cells.  相似文献   

4.
5.
A search for variant endogenous cat viruses led to a novel isolate. Although the major envelope glycoprotein of this virus was similar in size to that of an RD-114-like virus that was coisolated, it was unrelated to RD-114 or feline leukemia virus by immunological and biological criteria. This degree of dissimilarity suggests a different evolutionary progenitor from that for the RD-114 and feline leukemia virus viral envelopes. The novel virus did, however, code for gag gene polypeptides which are closely related to RD-114 virus. Neither the novel isolate nor the RD-114-like coisolate induced foci in S+L- cat cells which restrict focus induction by RD-114 virus. This suggests that the two viruses share a common genomic target of restriction which resides outside of the env region.  相似文献   

6.
RD-114, baboon, and woolly monkey viral RNA's compared in size and structure.   总被引:30,自引:0,他引:30  
The molecular weights, subunit compositions, and secondary structure patterns of the RNAs from an endogenous baboon virus and from a woolly monkey sarcoma virus were examined and compared to the properties of the RNA of RD-114, an endogenous feline virus. The high molecular weight RNA extracted from each of these three viruses has a sedimentation coefficient of 52S, and a molecular length, measured by electron microscopy, of 16-20 kb (kb=kilobase, 1000 nucleotides). Each such RNA is a dimer, containing two monomer subunits of 8-10 kb in length (molecular weight 3 X 10(6) daltons). The two monomer subunits are joined at their non-poly(A) ends in a structure called the dimer linkage structure. The appearance of this structure is somewhat different for the different viruses. The dimer linkage dissociates at temperature estimated to be 87 degrees C in aqueous 0.1M Na+ for RD-114 and baboon viral RNAs, but at the lower temperature of 66 degrees C for woolly monkey RNA. All three viral RNAs have two large loops of similar size and position symmetrically placed on either side of the dimer linkage structure. Since the baboon virus is partially related to RD-114, and the woolly monkey virus is unrelated to either of the other two, the dimer linkage and symmetrical loops are surprisingly similar and may well be common features of type C virus RNAs.  相似文献   

7.
Hybridomas from mice immunized with baboon endogenous virus (BaEV) from A204(M7) cells produced several antiviral monoclonal antibodies and, in addition, antibodies D-12 and E-4, which appeared to be virus specific because they reacted with BaEV but not with Mason-Pfizer virus or RD-114 virus. However, they also bound to human virus-free cells, and they did not recognize BaEV from bat or canine host cells. Cell membrane targets for these antibodies comigrated with an 18,000-dalton protein, which may contain specific determinants of BaEV receptors since antibody masking of these cell sites prevented BaEV but not Mason-Pfizer virus or RD-114 virus adsorption. However, RD-114 virus interfered with BaEV adsorption. Thus, the two viral receptors must be adjacent, but the antibody D-12 and E-4 targets are not within the active site of RD-114 virus receptor. Conversely, cell coating with BaEV from bat or canine hosts inhibited antibody D-12 binding. Noncultivated human lymphocytes and cells from fetal organs bound much less antibody D-12 than did cells from established cell lines, with a correlation between amounts of antibody D-12 acceptor sites and BaEV receptors. Thus, in vivo, BaEV infection of human cells may be inefficient. In vitro, antibody D-12 treatment of chronically infected A204(M7) cells caused intracellular accumulation of viral proteins and decreased virus release, with no such effect on RD-114 virus-producing cells. Canine cells bound antibody D-12 only if coated with BaEV from A204(M7) cells, indicating that the human determinant coadsorbed with the virions to animal cells. Possibly, determinants of cell receptors participate in BaEV maturation and become associated with the virions.  相似文献   

8.
Analysis of a cat genomic DNA library showed that cats harbor a previously unrecognized endogenous type C retrovirus, whose env gene has homology to the murine Fv-4 resistance gene. This unique retrovirus, designated FcEV (Felis catus endogenous retrovirus), has a type C pol gene, closely related to the primate Papio cynocephalus endogenous virus (PcEV) pol, not overlapping the env gene, unlike in other type C retroviruses, and is presumably present in a higher copy number than RD-114. Phylogenetic analysis of FcEV and RD-114 fragments amplified from cat species and comparison with baboon endogenous virus (BaEV) fragments from monkeys suggested that RD-114 does not represent the cat strain of BaEV but is actually a new recombinant between FcEV type C genes and the env gene of BaEV. Although BaEV did appear to have infected an ancestor of the domestic cat lineage, it was a de novo recombinant that made its way into the cat germ line.  相似文献   

9.
The tRNAs that are bound to the genomic RNAs of several murine, feline, and primate retroviruses have been identified. Transfer RNAs were divided into those loosely bound and those tightly bound by stepwise thermal dissociation of the 70 S RNA. They were then identified and semiquantitated by aminoacylation. Proline tRNA is the most tenaciously bound tRNA in several strains of murine leukemia virus, two strains of feline leukemia virus, and the primate viruses simian sarcoma, baboon endogenous, and gibbon ape lymphoma. In the feline xenotropic virus, RD-114, tRNAGly is enriched in the most tightly bound fraction. In Mason-Pfizer monkey virus, as in the murine mammary tumor virus, tRNALys is the tRNA most tenaciously bound to its genomic RNA. Besides the most tightly associated tRNA, one or more different tRNAs are found in relatively large amounts in association with the 70 S RNA. (For convenience, we refer to the largest RNA ccomplex (50-70 S) isolated from any of the retroviruses studies as '70 S' RNA.) These tRNAs can be distinguished from the most tightly bound tRNA by the fact that they can be dissociated at lower temperatures. However, they occur in the same relative abundance as the tightly bound tRNA.  相似文献   

10.
Autonomous radiation-induced leukemia virus (RadLV) replication could be detected in mouse 3T3 cells by the development of interference with murine sarcoma virus (MSV), the appearance of covert helper activity for defective MSV, and by the induction of cytopathic effect type foci in MSV-transformed, leukemia virus-negative (S+L-) cells. A chronic infection of either 3T3 or S+L- cells with RadLV could be established. Both RadLV infectivity and helper activity were demonstrated in the same peak at a buoyant density of 1.16 g/cm(3). Additionally a soluble inhibitor of MSV focus formation was found which could be separated from infectious RadLV. Examination of cell clones derived from chronically infected 3T3 cells showed that essentially every cell was infected and produced both infectious RadLV and low levels of inhibitor. Quantitative comparisons of autonomously replicating RadLV in normal 3T3 and S+L- cells suggested that RadLV may consist of several populations of virus of varying replicative potential. Apparently 99% of RadLV can be assayed only as helper units in normal cells or as replicative units in S+L- cells. To explain the atypical results, a model for RadLV deficiency is proposed.  相似文献   

11.
The RD-114 family of endogenous retroviral sequences in domestic cats has been shown to consist of approximately 20 copies of genetically divergent virogenes per haploid genome. The chromosomal localization for four endogenous sequences (RDV1-4) was accomplished by correlating the occurrence of specific feline chromosomes with diagnostic viral DNA fragments in a panel of cat X rodent somatic cell hybrids. Analysis of the hybrid panel revealed that endogenous RD-114 sequences are dispersed on multiple cat chromosomes, that certain proviral segments are polymorphic with respect to the presence or absence of virus, and that a restriction fragment characteristic of inducible RD-114 resides on a single feline chromosome (B3), probably at a single locus.  相似文献   

12.
13.
The cell cycle dependence of retrovirus replication was studied. Canine sarcoma (D-17) cells were infected de novo with the xenotropic feline retrovirus RD-114 under conditions previously reported to simultaneously inhibit virus replication and cell DNA synthesis and/or cell division. RD-114 viral antigen synthesis was observed under conditions previously reported to be inhibitory to avian and murine oncornavirus replication, including confluency and serum deprivation, X-irradiation, mitomycin C pretreatment, colchicine, and ethidium bromide treatments of cells. Several mechanisms that could account for viral antigen synthesis under the restrictive conditions used are discussed.  相似文献   

14.
The 70S and 4S RNA components of a C-type oncornavirus, RD-114, released from a human rhabdomyosarcoma cell line (RD) after transplantation in a kitten, were analyzed for nucleotide constituents. Minor nucleotides were detected only in the 4S RNA populations, and two of these nucleotides were identified as 5,6-dihydro-UMP and pseudo-UMP. The base composition of the RD-114 70S RNA differs from that of the 70S RNA from RD-FeLV (the virus released from the RD cell line after deliberate infection with a feline leukemia virus).  相似文献   

15.
Electron microscope and gel electrophoresis studies show that the high-molecular-weight (50 to 70S) RNA extract from Friend virus (FV) is a dimer with the same basic structure previously observed for the RNAs from RD-114 virus, baboon virus, and woolly monkey virus. This observation greatly strengthens the inference that the dimer structure is a general characteristic of the RNAs of all mammalian type C viruses. The FV dimer is slightly less stable than the RNA dimer of woolly monkey virus, which is, in turn, much less stable than those of RD-114 and baboon virus. There are three FV monomer components, small (S), medium (M), and large (L), with molecular lengths of 6.7 +/- 0.6, 7.7 +/- 0.6, and 9.5 +/- 0.6 kilobases, respectively. There are approximately equal amounts of the S and M components and much less of the L component. Most of the dimers are homodimers (SS, MM, and LL). The frequency of heterodimers (SM, SL, ML) is much less than expected for a random assortment model.  相似文献   

16.
Endogenous xenotropic cat type C virus (RD-114)- and infectious feline leukemia virus (FeLV)-specific gene expressions were measured in spontaneous sarcomas carcinomas, and nonmalignant cat tissues by molecular hybridization for virus-specific RNA and competition radio-immunoassays for the major internal protein (p30) of these two viruses. The results indicate that RD-114 gene expression in sarcomas and carcinomas at both RNA and p30 levels is significantly higher than histologically normal tissues from cats free of cancer. In contrast, the levels of FeLV viral RNA and p30 are fount to be low or undetectable in the majority of these tumored and normal tissues examined. Whereas variability in the amounts of RD-114 OR FeLV RNA and p30 expressed is found in tissues from different cats, their expression is fairly uniform in multiple malignant tissues of the same cat. The finding of widespread occurrence of elevated RD-114 gene expression in sarcomas and carcinomas is consistent with our similar observation with natural lymphomas of domestic cats and suggests that expression of certain functions of this endogenous virus may be etiologically involved in the development of many different spontaneous neoplasms of cats.  相似文献   

17.
The major phosphoprotein common to woolly monkey sarcoma virus, gibbon ape lymphosarcoma virus, and type C viruses of the lower mammalian species (mouse, rat, cat), with the exception of the endogenous cat virus (RD-114), is the polypeptide of about 12,000 molecular weight. The protein-phosphate bond in this polypeptide of several viruses is of the phosphoserine variety excepting gibbon ape virus, which contains both phosphoserine and phosphothreonine. The primary phosphoprotein of RD-114 virus and the endogenous baboon type C virus, on the other hand, is the polypeptide of about 15,000 molecular weight which contains phosphothreonine as its phosphoamino acid. A second major phosphoprotein of molecular weight of 10,000 is detected only in viruses genetically related to rat species including those derived from the RPL cell line, from Sprague-Dawley rat embryo cells, and the Kirsten mouse sarcoma virus which was recovered from a mouse erythroblastosis virus after in vivo propagation through rat. These phosphorylated polypeptides of molecular weight 15,000, 12,000, or 10,000 are present in the virion structure in several different but nonrandom phosphorylated states.  相似文献   

18.
A combination of technical advances (most notably heterologous cell fusion, high resolution G-banding, and molecular cloning) has contributed to an accelerated advance in genetic analysis in mammals. The present human genetic map contains over 400 gene assignments and the map is growing rapidly as each new molecular clone or immunological reagent is developed. In our laboratory, we have developed a panel of rodent X human somatic cell hybrids that have been utilized in chromosome assignment of several classes of genes including oncogenes (ras, raf) and endogenous human retroviral sequences (ERVL, 2, etc). Using similar techniques, a biochemical genetic map of the domestic cat has been derived. The cat has 19 chromosome pairs and, to date, 40 genes have been mapped to 16 linkage or syntenic groups. Comparison of linkage relationships between homologous enzymes has revealed a striking conversation of chromosomal linkage association between cat and man. A comparison of syntenically homologous, highly extended high resoultion G-banded chromosomes between the two mammalian families revealed that 20–25%, by length, of the human karyotype can be precisely aligned (chromomere to chromomere) between cats and man despite the evolutionary divergence of the species nearly 80 million years ago. Moderately repetitive families of retrovirus-related DNAs exist within the feline and the human genomes. We have isolated molecular clones of several members of the feline RD-114 retrovirus family from a genomic library of normal cat cellular DNA. The endogenous sequences analyzed were similar to each other in that they were colinear with RD-114 proviral DNA, were bounded by long terminal redundancies, and conserved many restriction sites in the gag and pol regions. Several sequences were apparently deleted, relative to the previously characterized inducible RD-114 genome. The env regions of a number of endogenous RD-114 sequences examined were substantially deleted or diverged; a subset of these sequences contained information at the position of the env region that was not homologous to inducible RD-114. The RD-114 virogenes were dispersed to several cat chrosomes that were localized using a panel of rodent x cat somatic cell hybrids. A comparison of the genetic properties of endogenous human retroviral sequences revealed several similarities between the human and feline status of endogenous retroviruses.  相似文献   

19.
20.
RD-114 is a replication-competent, xenotropic retrovirus which is homologous to a family of moderately repetitive DNA sequences present at ca. 20 copies in the normal cellular genome of domestic cats. To examine the extent and character of genomic divergence of the RD-114 gene family as well as to assess their positional association within the cat genome, we have prepared a series of molecular clones of endogenous RD-114 DNA segments from a genomic library of cat cellular DNA. Their restriction endonuclease maps were compared with each other as well as to that of the prototype-inducible RD-114 which was molecularly cloned from a chronically infected human cell line. The endogenous sequences analyzed were similar to each other in that they were colinear with RD-114 proviral DNA, were bounded by long terminal redundancies, and conserved many restriction sites in the gag and pol regions. However, the env regions of many of the sequences examined were substantially deleted. Several of the endogenous RD-114 genomes contained a novel envelope sequence which was unrelated to the env gene of the prototype RD-114 env gene but which, like RD-114 and endogenous feline leukemia virus provirus, was found only in species of the genus Felis, and not in other closely related Felidae genera. The endogenous RD-114 sequences each had a distinct cellular flank which indicates that these sequences are not tandem but dispersed nonspecifically throughout the genome. Southern analysis of cat cellular DNA confirmed the conclusions about conserved restriction sites in endogenous sequences and indicated that a single locus may be responsible for the production of the major inducible form of RD-114.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号