共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly. 相似文献
4.
Export and localization of N-terminally truncated derivatives of Escherichia coli K-12 outer membrane protein PhoE 总被引:4,自引:0,他引:4
To identify export and sorting information in outer membrane protein PhoE of Escherichia coli K-12, a set of deletions was created, resulting in the removal of N-terminal amino acids of the mature protein. Pulse-chase experiments revealed that some mutant proteins were slowly or not at all processed, but there was not correlation between processing rate and the extent of the deletions. The unprocessed precursors were accessible to trypsin in the periplasm showing that processing by leader peptidase rather than translocation is affected by these deletions. The results show that no specific sequences in the N-terminal part of the mature PhoE protein are required for translocation through the inner membrane. The capability of the processed mutant proteins to assemble into the outer membrane was correlated to the exten of the deletions. Thus, mutants which lack up to amino acid residue 14 are normally incorporated into the outer membrane. Larger deletions which removed the first postulated membrane-spanning fragment of the protein affected the efficiency of assembly: in addition to trimers of the protein in the outer membrane, also monomers were detected in the periplasm. If the deletions extended C-terminally to residue 48, only monomeric forms of the proteins were found in the periplasm. 相似文献
5.
Apparent bacteriophage-binding region of an Escherichia coli K-12 outer membrane protein. 总被引:1,自引:4,他引:1 下载免费PDF全文
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli. It serves as the receptor for several T-even-like phages and is required for the action of certain colicins and for the stabilization of mating aggregates in conjugation. We have isolated two mutant alleles of the cloned ompA gene which produce a protein that no longer functions as a phage receptor. Bacteria possessing the mutant proteins were unable to bind the phages, either reversibly or irreversibly. However, both proteins still functioned in conjugation, and one of them conferred colicin L sensitivity. DNA sequence analysis showed that the phage-resistant, colicin-sensitive phenotype exhibited by one mutant was due to the amino acid substitution Gly leads to Arg at position 70. The second mutant, which contained a tandem duplication, encodes a larger product with 8 additional amino acid residues, 7 of which are a repeat of the sequence between residues 57 and 63. In contrast to the wild-type OmpA protein, this derivative was partially digested by pronase when intact cells were treated with the enzyme. The protease removed 64 NH2-terminal residues, thereby indicating that this part of the protein is exposed to the outside. It is argued that the phage receptor site is most likely situated around residues 60 to 70 of the OmpA protein and that the alterations characterized have directly affected this site. 相似文献
6.
7.
8.
Major proteins of the outer cell envelope membrane of Escherichia coli K-12: multiple species of protein I. 总被引:20,自引:0,他引:20
Ulf Henning Waltraud Schmidmayr Ingrid Hindennach 《Molecular & general genetics : MGG》1977,154(3):293-298
Summary Protein I, one of the major outer membrane proteins ofE. coli, in a number of strains exists as two electrophoretically separable species Ia and Ib. Two phages, TuIa and TuIb, have been found which use, as receptors, proteins Ia and Ib, respectively. Selection for resistance to phage TuIb yielded mutants still possessing protein Ia and missing protein Ib (Ia+ Ib-). Selection in this background, for resistance to phage TuIa yielded one class of mutants missing both species of protein I and another synthesizing a new species of protein I, polypeptide Ic.Tryptic fingerprints of Ia and Ic are very similar and the sequence of 8 N-terminal amino acids is identical for Ia and Ic. Yet, Ic showed an entirely different pattern of cyanogen bromide fragments than that of protein Ia. With another example (cyanogen bromide fragments of protein II*, with and without performic acid oxidation) it is shown that protein modification can lead to gross changes of the electrophoretic mobility of cyanogen bromide fragments. It is not unlikely that all protein I species observed so far represent in vivo modifications of one and the same polypeptide chain.A genetic analysis together with data from other laboratories revealed that at least 4 widely separated chromosomal loci are involved in the expression of the protein I species known to date. 相似文献
9.
Escherichia coli K-12 tolF mutants: alterations in protein composition of the outer membrane. 总被引:15,自引:7,他引:15 下载免费PDF全文
Outer membrane materials prepared from three independently isolated spontaneous Escherichia coli tolF mutants contained no detectable protein Ia. The loss of this protein was nearly completely compensated for by an increase in other major outer membrane proteins, Ib and II. Thus, the major outer membrane proteins accounted for 40% of the total cell envelope protein in both tol+ and tolF strains. No changes were found in the levels of inner membrane proteins prepared from tolF strains when compared with similar preparations from the tol+ strain. Phage-resistant mutants were selected starting with a tolF strain by using either phage TuIb or phage PA2. These phage-resistant tolF strains contained neither protein Ia nor protein Ib. The mutation leading to the loss of protein Ib in these strains is independent of the tolF mutation and is located near malP on the E. coli genetic map. 相似文献
10.
Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. 总被引:7,自引:23,他引:7
Escherichia coli K-12 strains carrying mutations in the ompB gene or double mutations in the tolF and par genes lack the major outer membrane proteins 1a and 1b. These strains are deficient in the transport of small hydrophylic compounds and are multiply colicin resistant. When revertants of these strains were sought, a number of extragenic pseudorevertants were obtained which produced new outer membrane proteins. These new proteins could be divided into three classes by differences in electrophoretic mobility on polyacrylamide gels, by differing specificities for transport of small molecules, and by the identification of three different genetic loci for genes controlling their production. These genetic loci are designated as nmpA (at approximately 82.5 min on the E. coli K-12 genetic map), nmpB (8.6 min), and nmpC (12 min). The new proteins produced in strains carrying nmpA, nmpB, or nmpC mutations did not cross-react with antiserum against a mixture of proteins 1a and 1b, or with antiserum against phage-directed protein 2. Production of the new membrane proteins restored sensitivity to some of the colicins. 相似文献
11.
Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. 总被引:6,自引:2,他引:6 下载免费PDF全文
A number of T-even-like bacteriophages use the outer membrane protein OmpA of Escherichia coli as a receptor. We had previously analyzed a series of ompA mutants which are resistant to such phages and which still produce the OmpA protein (R. Morona, M. Klose, and U. Henning, J. Bacteriol. 159:570-578, 1984). Mutational alterations were found near or at residues 70, 110 and 154. Based on these and other results a model was proposed showing the amino-terminal half of the 325-residue protein crossing the outer membrane repeatedly and being cell surface exposed near residues 25, 70, 110, and 154. We characterized, by DNA sequence analysis, an additional 14 independently isolated phage-resistant ompA mutants which still synthesize the protein. Six of the mutants had alterations identical to the ones described before. The other eight mutants possessed seven new alterations: Ile-24----Asn, Gly-28----Val, deletion of Glu-68, Gly-70----Cys, Ser-108----Phe, Ser-108----Pro, and Gly-154----Asp (two isolates). Only the latter alteration resulted in a conjugation-deficient phenotype. The substitutions at Ile-24 and Gly-28 confirmed the expectation that this area of the protein also participates in its phage receptor region. It is unlikely that still other such sites of the protein are involved in the binding of phage, and it appears that the phage receptor area of the protein has now been characterized completely. 相似文献
12.
13.
Isolation and characterization of outer membrane permeability mutants in Escherichia coli K-12. 总被引:14,自引:10,他引:4 下载免费PDF全文
Escherichia coli normally requires the lamB gene for the uptake of maltodextrins. We have identified and characterized three independent mutations that allow E. coli to grow on maltodextrin in the absence of a functional lamB gene by allowing maltodextrins with a molecular weight greater than 1,000 to cross the outer membrane barrier. Two of the mutations map to the structural gene for the outer membrane porin OmpF, and the remaining mutation maps to the structural gene for the second major outer membrane porin, OmpC. These mutations increase the permeability of the outer membrane to small hydrophilic substances, antibiotics, and detergents. These mutations alter the electrophoretic mobility of the respective porin proteins. 相似文献
14.
15.
Export of hybrid proteins FhuA''-''LacZ and FhuA''-''PhoA to the cell envelope of Escherichia coli K-12. 总被引:3,自引:11,他引:3 下载免费PDF全文
The fhuA gene of Escherichia coli K-12 encodes an outer membrane protein that acts as the ferrichrome-iron(III) receptor. To determine the export signals and sorting information within FhuA, gene fusions of fhuA'-'lacZ and fhuA'-'phoA were constructed. Although a FhuA'-'LacZ hybrid protein was detected in the Triton X-100-insoluble fraction of the cell envelope, direct immunoelectron microscopic observation showed that this protein remained in the cytoplasm. FhuA'-'PhoA hybrid proteins were all exported across the cytoplasmic membrane. Those hybrids containing up to 88 amino acids of FhuA (FhuA88) fused to PhoA were released along with other periplasmic proteins. Hybrids containing 180 or more amino acids of FhuA (FhuA180) fused to PhoA were associated with the outer membrane. It is proposed that some information inherent in the sequences between FhuA88 and FhuA180 confers stable association with the outer membrane. 相似文献
16.
17.
The gene for a new outer membrane-associated protease, designated OmpP, of Escherichia coli has been cloned and sequenced. The gene encodes a 315-residue precursor protein possessing a 23-residue signal sequence. Including conservative substitutions and omitting the signal peptides, OmpP is 87% identical to the outer membrane protease OmpT. OmpP possessed the same enzymatic activity as OmpT. Immuno-electron microscopy demonstrated the exposure of the protein at the cell surface. Digestion of intact cells with proteinase K removed 155 N-terminal residues of OmpP, while the C-terminal half remained protected. It is possible that much of this N-terminal part is cell surface exposed and carries the enzymatic activity. Synthesis of OmpP was found to be thermoregulated, as is the expression of ompT (i.e., there is a low rate of synthesis at low temperatures) and, in addition, was found to be controlled by the cyclic AMP system. 相似文献
18.
M A McIntosh C L Pickett S S Chenault C F Earhart 《Biochemical and biophysical research communications》1978,81(4):1106-1112
A novel iron uptake system was observed in pseudorevertants of , strains defective in ferrienterochelin transport. The new system is unique in that it is an active transport system that does not utilize any known siderophore. Acquisition of the new uptake system occurs concomitantly with the loss of two major outer membrane proteins (b and c) believed to function as structural components of transmembrane pores. 相似文献
19.
Interactions of outer membrane proteins O-8 and O-9 with peptidoglycan sacculus of Escherichia coli K-12. 总被引:26,自引:0,他引:26
The outer membrane proteins O-8 and O-9 were specifically bound to the peptidoglycan sacculus in sodium dodecyl sulfate (SDS) solution. Other cellular proteins failed to interact with the peptidoglycan sacculus under the same conditions. When the outer membrane was preheated in SDS solution, the binding did not take place. Optimum binding was observed at pH 8 in the presence of 5 mM Mg2+. A high concentration of sodium chloride strongly inhibited the binding. The effects of these factors on the bindings of O-8 and O-9 required neither the bound nor the free form of Braun's lipoprotein, nor was the binding of either protein necessary for the binding of the other. Proteins O-8 and O-9 were also found in the peptidoglycan sacculus when it was prepared from cells in SDS solution at 60 degrees. A dilution experiment showed that the complex was not an artifact. The mode of interaction between these proteins and peptidoglycan in the preparation was similar to that in the reassembled O-8-O-9-peptidoglycan complex, as judged from the sensitivity to sodium chloride and temperature. The physiological importance of the complex is discussed in relation to the assembly of the outer membrane on the cell surface. 相似文献
20.
Two mutations which affect the barrier function of the Escherichia coli K-12 outer membrane. 总被引:15,自引:11,他引:15 下载免费PDF全文
Two genetically distinct classes of novobiocin-supersensitive mutants were isolated from Escherichia coli K-12. One class, given the phenotypic name NbsA, lies at 10 min on the E. coli chromosome. The order of the genes in this region, based on transductional analyses, is proC NbsA plsA purE. The second, NbsB, lies at 80 min. The order of the genes in this region, based on transduction analyses, is xyl cysE NbsB pyrE. Both classes of mutants show increased sensitivity to hydrophobic drugs but are different: NbsA cells tend to be more sensitive to cationic agents, whereas NbsB cells show the opposite tendency. The sole detectable biochemical alteration in NbsA strain is greater than 90% reduction in the phosphate content of the lipid A region of the lipopolysaccharide. The NbsB mutation results in lipopolysaccharide that contains primarily the stereoisomer D-glycero-D-mannoheptose, rather than L-glycero-D-mannoheptose, and which contains very little of the distal sugars. Since NbsA strains have apparently normal outer membrane proteins and total cellular phospholipids, changes solely in lipopolysaccharide can increase permeability to certain hydrophobic antibiotics. Complementation studies indicate that the NbsA marker is probably allelic with acrA. In addition, the NbsB marker is genetically and phenotypically similar to the rfaD locus of Salmonella typhimurium. For this reason, the phenotypic designations NbsA and NbsB have been changed to the genotypic designations acrA and rfaD, respectively. 相似文献