共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dual functions of the steroid hormone receptor coactivator 3 in modulating resistance to thyroid hormone 下载免费PDF全文
Ying H Furuya F Willingham MC Xu J O'Malley BW Cheng SY 《Molecular and cellular biology》2005,25(17):7687-7695
Mutations of the thyroid hormone receptor beta (TRbeta) gene cause resistance to thyroid hormone (RTH). RTH is characterized by increased serum thyroid hormone associated with nonsuppressible thyroid-stimulating hormone (TSH) and impaired growth. It is unclear how the actions of TRbeta mutants are modulated in vivo to affect the manifestation of RTH. Using a mouse model of RTH that harbors a knockin mutation of the TRbeta gene (TRbetaPV mouse), we investigated the effect of the steroid hormone receptor coactivator 3 (SRC-3) on RTH. In TRbetaPV mice deficient in SRC-3, dysfunction of the pituitary-thyroid axis and hypercholesterolemia was lessened, but growth impairment of RTH was worsened. The lessened dysfunction of the pituitary-thyroid axis was attributed to a significant decrease in growth of the thyroid and pituitary. Serum insulin-like growth factor 1 (IGF-1) was further reduced in TRbetaPV mice deficient in SRC-3. This effect led to reduced signaling of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway that is known to mediate cell growth and proliferation. Thus, SRC-3 modulates RTH by at least two mechanisms, one via its role as a receptor coregulator and the other via its growth regulatory role through the IGF-1/PI3K/AKT/mTOR signaling. 相似文献
3.
Nadia Schoenmakers Carla Moran Robin P. Peeters Theo Visser Mark Gurnell Krishna Chatterjee 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Thyroid hormone acts via receptor subtypes (TRα1, TRβ1, TRβ2) with differing tissue distributions, encoded by distinct genes (THRA, THRB). THRB mutations cause a disorder with central (hypothalamic–pituitary) resistance to thyroid hormone action with markedly elevated thyroid hormone and normal TSH levels.Scope of review
This review describes the clinical features, genetic and molecular pathogenesis of a homologous human disorder mediated by defective THRA. Clinical features include growth retardation, skeletal dysplasia and constipation associated with low-normal T4 and high-normal T3 levels and a low T4/T3 ratio, together with subnormal reverse T3 levels. Heterozygous TRa1 mutations in affected individuals generate defective mutant receptors which inhibit wild-type receptor action in a dominant negative manner.Major conclusions
Mutations in human TRα1 mediate RTH with features of hypothyroidism in particular tissues (e.g. skeleton, gastrointestinal tract), but are not associated with a markedly dysregulated pituitary–thyroid axis.General significance
Human THRA mutations could be more common but may have eluded discovery due to the absence of overt thyroid dysfunction. Nevertheless, in the appropriate clinical context, a thyroid biochemical signature (low T4/T3 ratio, subnormal reverse T3 levels), may enable future identification of cases.This article is part of a Special Issue entitled Thyroid hormone signalling. 相似文献4.
Valadares NF Castilho MS Polikarpov I Garratt RC 《Bioorganic & medicinal chemistry》2007,15(13):4609-4617
2D QSAR studies were carried out for a series of 55 ligands for the Thyroid receptors, TRalpha and TRbeta. Significant cross-validated correlation coefficients (q(2)=0.781 (TRalpha) and 0.693 (TRbeta)) were obtained. The models' predictive abilities were proved more valuable than the classical 2D-QSAR, and were further investigated by means of an external test set of 13 compounds. The predicted values are in good agreement with experimental values, suggesting that the models could be useful in the design of novel, more potent TR ligands. Contribution map analysis identified a number of positions that are promising for the development of receptor isoform specific ligands. 相似文献
5.
Numerous coactivators that bind nuclear hormone receptors have been isolated and characterized in vitro. Relatively few studies have addressed the developmental roles of these cofactors in vivo. By using the total dependence of amphibian metamorphosis on thyroid hormone (T3) as a model, we have investigated the role of steroid receptor coactivator 3 (SRC3) in gene activation by thyroid hormone receptor (TR) in vivo. First, expression analysis showed that SRC3 was expressed in all tadpole organs analyzed. In addition, during natural as well as T3-induced metamorphosis, SRC3 was up-regulated in both the tail and intestine, two organs that undergo extensive transformations during metamorphosis and the focus of the current study. We then performed chromatin immunoprecipitation assays to investigate whether SRC3 is recruited to endogenous T3 target genes in vivo in developing tadpoles. Surprisingly, we found that SRC3 was recruited in a gene- and tissue-dependent manner to target genes by TR, both upon T3 treatment of premetamorphic tadpoles and during natural metamorphosis. In particular, in the tail, SRC3 was not recruited in a T3-dependent manner to the target TRbetaA promoter, suggesting either no recruitment or constitutive association. Finally, by using transgenic tadpoles expressing a dominant negative SRC3 (F-dnSRC3), we demonstrated that F-dnSRC3 was recruited in a T3-dependent manner in both the intestine and tail, blocking the recruitment of endogenous coactivators and histone acetylation. These results suggest that SRC3 is utilized in a gene- and tissue-specific manner by TR during development. 相似文献
6.
7.
The function of vitamin D receptor in vitamin D action 总被引:5,自引:0,他引:5
Kato S 《Journal of biochemistry》2000,127(5):717-722
8.
9.
10.
The steroid hormone of sunlight soltriol (vitamin D) as a seasonal regulator of biological activities and photoperiodic rhythms 总被引:1,自引:0,他引:1
W E Stumpf T H Privette 《The Journal of steroid biochemistry and molecular biology》1991,39(2):283-289
Neural and systemic somatotrophic effects of the ultraviolet component of sunlight through the skin-vitamin D endocrine system are considered as alternate or additional to the neuroendocrine effects of the visual component of light through the retino-diencephalic input. The extensive distribution of soltriol nuclear receptor cells, revealed by autoradiography with tritium-labeled 1,25 dihydroxycholecalciferol (vitamin D, soltriol) and related effects, indicate an involvement of vitamin D-soltriol in the actinic induction of seasonal biorhythms. This is considered to be independent of the traditionally assigned effects of vitamin D on systemic calcium regulation. Skin-soltriol mediated seasonal, and to a degree daily, genomic activation involves many target regions in the brain. These include neurons in the central nucleus of the amygdala, in the linked part of the bed nucleus of the stria terminalis, in periventricular hypothalamic neurons, dorsal raphe nucleus, reticular thalamic nucleus and autonomic, endocrine as well as sensory and motor components of the brainstem and spinal cord. Additional to the eye-regulated "suprachiasmatic clock", existence of a soltriol-vitamin D regulated neural "timing circuit(s)" is proposed. Both, activational and organizational effects of soltriol on mature and developing brain regions, respectively are likely to play a role in the regulation of neuronal functions that include the modulation and entrainment of biorhythms. Soltriol's central effects correlate with peripheral effects on elements in skin, bone, teeth, kidney, intestine, heart and blood vessels, endocrine organs, and tissues of the immune and reproductive system. 相似文献
11.
12.
13.
14.
15.
16.
Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element 总被引:21,自引:0,他引:21
Using a gel shift assay, we analyzed the binding of in vitro translated alpha- and beta-thyroid hormone (T3) receptors to a T3-response element (TRE) derived from the rat GH gene. No receptor-TRE complexes were observed when translated receptor alone was incubated with the TRE. However, addition of a nuclear extract from liver to the translational products resulted in the formation of two receptor-DNA complexes for both the alpha- and beta-receptors. These complexes were shown to contain translated receptor by comigration of 32P-labeled TRE and 35S-labeled receptor in the gel shift assay. A competition experiment demonstrated that formation of the complexes was sequence specific. Preincubation of the liver nuclear extract at 60 C abolished formation of both complexes indicating that receptor-TRE binding required a heat-labile nuclear factor. Phosphocellulose chromatography of the nuclear extract resulted in separation of the activities required for formation of the two complexes. Analysis of nuclear extracts from different tissues revealed that one complex formed in the presence of all extracts, whereas the second complex appeared predominantly with a nuclear extract from liver. Addition of T3 to the binding reaction had no effect on receptor-TRE complex formation. We suggest that nuclear factors interact with the T3 receptor to enhance hormone-independent binding to a TRE. 相似文献
17.
18.
Molecular conjugates of hormone receptor-ligands with molecular probes or functional domains are finding diverse applications in chemical biology. Whereas many examples of hormone conjugates that target steroid hormone receptors have been reported, practical ligand conjugates that target the nuclear thyroid hormone receptor (TRbeta) are lacking. TR-targeting conjugate scaffolds based on the ligands GC-1 and NH-2 and the natural ligand triiodothyronine (T3) were synthesized and evaluated in vitro and in cellular assays. Whereas the T3 or GC-1 based conjugates did not bind TRbeta with high affinity, the NH-2 inspired fluorescein-conjugate JZ01 showed low nanomolar affinity for TRbeta and could be used as a nonradiometric probe for ligand binding. A related analogue JZ07 was a potent TR antagonist that is 13-fold selective for TRbeta over TRalpha. JZ01 localizes in the nuclei of TRbeta expressing cells and may serve as a prototype for other TR-targeting conjugates. 相似文献
19.
20.
A new mechanism for steroid unresponsiveness: loss of nuclear binding activity of a steroid hormone receptor 总被引:10,自引:0,他引:10
The glucocorticoid, dexamethasone, binds to the specific cytosol receptors of a steroid-resistant mouse lymphoma cell line with the same affinity as to the receptors of the steroid-responsive parental cells. In the sensitive cells, the receptor-steroid complex translocates to the nucleus, whereas in the resistant cells nuclear transfer is greatly diminished. “Activated” receptor-dexamethasone complex from sensitive cells binds to isolated nuclei from both sensitive and resistant cell types, whereas the complex from the resistant cells binds to neither nuclei. Furthermore, the activated complex from sensitive cells binds to isolated homologous and heterologous DNA, whereas the complex from the resistant cells displays greatly reduced binding activity, implying that DNA plays a significant role in nuclear binding. These results suggest that the normal glucocorticoid receptor has two active domains: one for steroid binding, and the other for interaction with nuclear acceptor sites. The resistant cells described in this paper contain a receptor apparently defective in the latter activity. 相似文献