首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To characterize 25-hydroxyvitamin D3 24-hydroxylase and 25-hydroxyvitamin D3 1-hydroxylase, the activities of the two enzymes were measured in the presence of two types of inhibitors. The effect of protein synthesis inhibitors on 25-hydroxyvitamin D3-stimulated 24-hydroxylase activity in 1-hydroxylating rat kidneys perfused in vitro was tested. Actinomycin D (4 microM) and cycloheximide (10 microM) each abolished 25-hydroxyvitamin D3 24-hydroxylase synthesis when added at the start of perfusion but not when added 4 h later; they did not affect 25-hydroxyvitamin D3 1-hydroxylase activity. The effects of cytochrome P-450 inhibitors on the two enzyme activities were then studied in vivo. Metyrapone and SKF-525A (50 mg/kg body weight) each inhibited 25-hydroxyvitamin D3 24-hydroxylase at 6 and 24 h; in contrast 1-hydroxylase increased and was 5 times the control value at 24 h. Finally, the in vitro effects of six cytochrome P-450 inhibitors at concentrations ranging from 10(-7) to 10(-3) M on enzyme activities in renal mitochondrial preparations were compared. Both enzymes were inhibited by all of the inhibitors, but inhibition of 25-hydroxyvitamin D3 24-hydroxylase was consistently greater than that of 25-hydroxyvitamin D3 1-hydroxylase. These studies demonstrate that 24-hydroxylation and 1-hydroxylation respond differently to protein synthesis inhibitors and to cytochrome P-450 inhibitors. The findings are consistent with the hypothesis that the two enzyme activities are associated with different cytochrome P-450 moieties.  相似文献   

2.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

3.
Two forms of cytochrome P-450 were purified to apparent homogeneity from several different preparations of human liver microsomes. One form, designated P-450DB, had relatively high catalytic activity towards the drugs debrisoquine, sparteine, bufuralol (both the (+)- and (-)-isomers), encainide, and propranolol and appears to be the enzyme involved in the polymorphic distribution of oxidative activities towards these substrates in humans. The other form, designated P-450PA, had relatively high phenacetin O-deethylase activity and appears to be involved in the variation of this activity among humans. Polyclonal antibodies raised to the two enzymes were specific for the antigens as judged by immunoelectrophoresis and immuno-inhibition studies. The two enzymes and their activities were distinguished by chromatographic separation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, amino acid composition, immuno-inhibition studies, and steady-state kinetic assays. Immunochemical studies suggest that each form represents only a small fraction of the total cytochrome P-450 in human liver microsomes. These biochemical studies provide a basis for better understanding the mechanisms which underlie genetic polymorphisms involving P-450 cytochromes in humans.  相似文献   

4.
The enzyme systems in rat liver and lung responsible for the oxidative metabolism of hydrazine derivatives were studied to determine whether these enzymes, cytochrome P-450 and monoamine oxidase, were responsible for metabolically activating hydrazines to carcinogenic/toxic metabolites. Cytochrome P-450 preferentially oxidized the nitrogen to nitrogen bond of 1,2-disubstituted hydrazines and hydrazides, while monoamine oxidase oxidized the nitrogen to nitrogen bond of all the classes of hydrazine derivatives that were tested. Oxidation of the nitrogen to nitrogen bond led to the formation of stable azo intermediates in the case of 1,2-disubstituted hydrazines and to unstable monoazo (diazene) metabolites in the case of monosubstituted hydrazines and hydrazides. In addition, cytochrome P-450 preferentially oxidized the carbon to nitrogen bond of monoalkylhydrazines; this reaction resulted in the formation of aldehyde metabolites (via hydrazone intermediates). Monosubstituted hydrazines were shown to be potent, irreversible inhibitors of mitochondrial monoamine oxidase. In contrast, the 1,2-disubstituted hydrazines appeared to be good substrates for the monoamine oxidase and served as competitive inhibitors at high concentrations. There did not appear to be any monoamine oxidase isozyme (form A or B) specificity in the metabolism of either the 1,2-disubstituted hydrazines or the monoalkylhydrazines, ethyl- and n-propylhydrazine.  相似文献   

5.
Following the example set by studies of the mechanistic aspects of the substrate specificity of various cytochrome P-450 enzymes, we have undertaken a parallel investigation of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Soluble methane monooxygenase is a multicomponent enzyme with a broad substrate specificity. Using substrates previously tested with cytochrome P-450 enzymes and using purified enzyme preparations, this work indicates that soluble methane monooxygenase has a similar oxidative reaction mechanism to cytochrome P-450 enzymes. The evidence suggests that soluble methane monooxygenase oxidizes substrates via a nonconcerted reaction mechanism (hydrogen abstraction preceding hydroxylation) with radical or carbocation intermediates. Aromatic hydroxylation proceeds by epoxidation followed by an NIH shift.  相似文献   

6.
A cytochrome P-450 that catalyzes the 24-hydroxylation of 25-hydroxyvitamin D3 (P-450cc24: P-450cholecalciferol24) was purified to electrophoretic homogeneity from the kidney mitochondria of female rats treated with vitamin D3 (Ohyama, Y., Hayashi, S., and Okuda, K. (1989) FEBS Lett. 255, 405-408). The molecular weight was 53,000, and its absorption spectrum showed peaks characteristic of cytochrome P-450. The turnover number was 22 min-1 and the specific content was 2.8 nmol/mg protein. The N-terminal amino acid sequence, Arg-Ala-Pro-Lys-Glu-Val-Pro-Leu-, is different from the N-terminal sequence of any other cytochrome P-450s so far reported. Upon reconstitution with the electron-transferring system of the adrenal mitochondria, the enzyme showed a high activity in hydroxylating 25-hydroxyvitamin D3 as well as 1 alpha,25-dihydroxyvitamin D3 at position 24. However, the purified enzyme hydroxylated neither vitamin D3 nor 1 alpha-hydroxyvitamin D3. The enzyme was also inactive toward xenobiotics. The enzyme hydroxylated 25-hydroxyvitamin D3 at position 24 but not at 1 alpha, indicating that the enzyme is distinct from that catalyzing 1 alpha-hydroxylation. The reaction followed Michaelis-Menten kinetics, and the Km value for 25-hydroxyvitamin D3 was 2.8 microM. Both vitamin D3 and 1 alpha-hydroxyvitamin D3 inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 in a competitive, concentration-dependent manner. 25-Hydroxyvitamin D3 24-hydroxylase activity was significantly inhibited by 7,8-benzoflavone, ketoconazole, and CO, whereas it was only slightly inhibited by aminoglutethimide, metyrapone, and SKF-525A. Mouse antibodies raised against the cytochrome P-450 inhibited the reaction about 70% and reacted with the P-450cc24 in immunoblotting but did not react with other kinds of cytochrome P-450 in rat liver microsomes and mitochondria.  相似文献   

7.
S Nakajin  J E Shively  P M Yuan  P F Hall 《Biochemistry》1981,20(14):4037-4042
Studies have been performed to test the hypothesis that cytochrome P-450 from testicular microsomes consists of a single protein with two enzymatic activities (17 alpha-hydroxylase and C17,20-lyase). Three lines of evidence to support the hypothesis were obtained. (1) The enzyme appears to be homogeneous by immunochemical criteria with anti-P-450 IgG (line of identity on immunodiffusion and a single band on immunoelectrophoresis), by demonstration of a single NH2-terminal amino acid (methionine) and the finding of 16 single amino acids at the NH2 terminus. (2) Optima for pH and temperature are the same for both enzymatic activities (pH 7.25 and 37 degrees C), and temperatures between 30 and 44 degrees C decreased both activities in such a way that the ratio of hydroxylase to lyase was the same at all temperatures tested. (3) A variety of inhibitors affect both activities to the same extent: Ki values for two competitive inhibitors (SU 8000, 0.04 microM; SU 10603, 0.3 microM) are the same for hydroxylase and lyase; partition coefficients for inhibition by carbon monoxide are similar for hydroxylase and lyase (20 +/- 2 and 27 +/- 3); anti-P-450 (serum and IgG) causes inhibition of both activities to the same extent, and the same is true of a variety of less specific inhibitors. It is concluded that a single heme protein (cytochrome P-450) from microsomes of neonatal pig testis catalyzes two reactions (hydroxylase and lyase) which are sequential steps in the synthesis of androgens by the testis leading to conversion of C21 precursors to C19 steroid hormones.  相似文献   

8.
Hydroxylation of coumarin to 7-hydroxycoumarin by liver microsomes from control or phenobarbital-pretreated mice is 5- to 10-fold higher in the DBA/2J strain compared to the AKR/J strain, while activities of nine other cytochrome P-450 mediated oxidations show only minor differences. Mixing experiments with whole liver homogenates and subcellular fractionations do not reveal the presence of enzyme activators or inhibitors or competing enzyme reactions in either strain. Comparisons of pH optima (pH 7.6), heat stability at 52 degrees C (6 to 8 min for 50% inactivation), and Km values (0.45 to 0.50 microM coumarin) for coumarin hydroxylase show no significant differences in the two strains of mice or their F1 hybrid. Similarly, only minor differences in inhibition of coumarin hydroxylase by carbon monoxide, SKF-525A, menadione, and several other inhibitors of microsomal mixed function oxidase reactions are observed in the two strains. In contrast to these data, aniline and metyrapone, two compounds which bind to the heme iron of cytochrome P-450 to form ferrihemochromes, show differential and opposite patterns of inhibition of enzyme activity in the DBA/2J and AKR/J mouse strains. This latter observation suggests that a structurally different cytochrome P-450 may hydroxylate coumarin in these two inbred mouse strains.  相似文献   

9.
The phosphorylation of rabbit liver microsomal cytochrome P-450 LM2 by catalytic subunit of cyclic AMP-dependent protein kinase (W. Pyerin et al. (1983) Carcinogenesis 4, 573) has now been studied in detail with purified soluble form of cytochrome P-450 as well as with the purified protein incorporated into model membranes. The apparent Km values for P-450 of the phosphorylation reaction in all experimental systems were in a range of 2-8 microM, while the Vmax values were dependent on the state of P-450. Upon phosphorylation, the reconstituted enzyme activities with benzphetamine (N-demethylation) and 7-ethoxycoumarin (O-deethylation) as substrates were reduced to 30-40% of control.  相似文献   

10.
The enzymatic mechanisms involved in the degradation of phenanthrene by the white rot fungus Pleurotus ostreatus were examined. Phase I metabolism (cytochrome P-450 monooxygenase and epoxide hydrolase) and phase II conjugation (glutathione S-transferase, aryl sulfotransferase, UDP-glucuronosyltransferase, and UDP-glucosyltransferase) enzyme activities were determined for mycelial extracts of P. ostreatus. Cytochrome P-450 was detected in both cytosolic and microsomal fractions at 0.16 and 0.38 nmol min(sup-1) mg of protein(sup1), respectively. Both fractions oxidized [9,10-(sup14)C]phenanthrene to phenanthrene trans-9,10-dihydrodiol. The cytochrome P-450 inhibitors 1-aminobenzotriazole (0.1 mM), SKF-525A (proadifen, 0.1 mM), and carbon monoxide inhibited the cytosolic and microsomal P-450s differently. Cytosolic and microsomal epoxide hydrolase activities, with phenanthrene 9,10-oxide as the substrate, were similar, with specific activities of 0.50 and 0.41 nmol min(sup-1) mg of protein(sup-1), respectively. The epoxide hydrolase inhibitor cyclohexene oxide (5 mM) significantly inhibited the formation of phenanthrene trans-9,10-dihydrodiol in both fractions. The phase II enzyme 1-chloro-2,4-dinitrobenzene glutathione S-transferase was detected in the cytosolic fraction (4.16 nmol min(sup-1) mg of protein(sup-1)), whereas aryl adenosine-3(prm1)-phosphate-5(prm1)-phosphosulfate sulfotransferase (aryl PAPS sulfotransferase) UDP-glucuronosyltransferase, and UDP-glucosyltransferase had microsomal activities of 2.14, 4.25, and 4.21 nmol min(sup-1) mg of protein(sup-1), respectively, with low activity in the cytosolic fraction. However, when P. ostreatus culture broth incubated with phenanthrene was screened for phase II metabolites, no sulfate, glutathione, glucoside, or glucuronide conjugates of phenanthrene metabolites were detected. These experiments indicate the involvement of cytochrome P-450 monooxygenase and epoxide hydrolase in the initial phase I oxidation of phenanthrene to form phenanthrene trans-9,10-dihydrodiol. Laccase and manganese-independent peroxidase were not involved in the initial oxidation of phenanthrene. Although P. ostreatus had phase II xenobiotic metabolizing enzymes, conjugation reactions were not important for the elimination of hydroxylated phenanthrene.  相似文献   

11.
We have reported (Kominami S., Shinzawa K. and Takemori S. (1982) Biochem. Biophys. Res. Commun. 109, 916–921) that a cytochrome P-450 purified from guinea pig adrenal microsomes shows 17α-hydroxylase and C-17,20-lyase activities in a reconstituted system with NADPH-cytochrome P-450 reductase. The homogeneity of the purified cytochrome P-450 was examined with the following methods: isoelectric focusing, immunoelectrophoresis and affinity chromatography on cytochrome b5-immobilized Sepharose. It was found that progesterone competitively inhibited C-17,20-lyase reaction and that progesterone was converted into androstenedione by 17α-hydroxylation followed by the lyase reaction. These results indicate that the dual activities are carried out by a single enzyme (P-45017α,lyase). P-45017α,lyase had the maximum activity at pH 6.1 both for 17α-hydroxylation (6.0 nmol/min per nmol of P-450) and the lyase reaction (11.0 nmol/min per nmol of P-450). Upon addition of cytochrome b5 to the reconstituted system, the optimal pH for 17α-hydroxylation was shifted to 7.0 and that of the lyase reaction to 6.6. The maximum activities at these optimal pH values were almost the same in the presence or absence of cytochrome b5. With the addition of cytochrome b5, both the activities were stimulated above pH 6.3–6.5 and were suppressed below pH 6.3–6.5. These results indicate that cytochrome b5 plays some important role in controlling the dual activities of P-45017α,lyase.  相似文献   

12.
Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The membrane microenvironment seems also to be of importance for the substrate specificity of cytochrome P-450K, since removal of the cytochrome from the membrane lowers its binding specificity to some extent. A comparison between the liver and kidney cytochrome P-450 systems suggests that the kidney cytochrome P-450K system is specialized for fatty acid hydroxylation.  相似文献   

13.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

14.
Two different dehalogenation enzymes were found in cell extracts of Mycobacterium fortuitum CG-2. The first enzyme was a halophenol para-hydroxylase, a membrane-associated monooxygenase that required molecular oxygen and catalyzed the para-hydroxylation and dehalogenation of chlorinated, fluorinated, and brominated phenols to the corresponding halogenated hydroquinones. The membrane preparation with this activity was inhibited by cytochrome P-450 inhibitors and also showed an increase in the A448 caused by CO. The second enzyme hydroxylated and reductively dehalogenated tetrahalohydroquinones to 1,2,4-trihydroxybenzene. This halohydroquinone-dehalogenating enzyme was soluble, did not require oxygen, and was not inhibited by cytochrome P-450 inhibitors.  相似文献   

15.
Two new cytochrome P-450 forms were purified from liver microsomes of the marine fish Stenotomus chrysops (scup). Cytochrome P-450A (Mr = 52.5K) had a CO-ligated, reduced difference spectrum lambda max at 447.5 nm, and reconstituted modest benzo[a]pyrene hydroxylase activity (0.16 nmol/min/nmol P-450) and ethoxycoumarin O-deethylase activity (0.42 nmol/min/nmol P-450). Cytochrome P-450A reconstituted under optimal conditions catalyzed hydroxylation of testosterone almost exclusively at the 6 beta position (0.8 nmol/min/nmol P-450) and also catalyzed 2-hydroxylation of estradiol. Cytochrome P-450A is active toward steroid substrates and we propose that it is a major contributor to microsomal testosterone 6 beta-hydroxylase activity. Cytochrome P-450A had a requirement for conspecific (scup) NADPH-cytochrome P-450 reductase and all reconstituted activities examined were stimulated by the addition of purified scup cytochrome b5. Cytochrome P-450B (Mr = 45.9K) had a CO-ligated, reduced difference spectrum lambda max at 449.5 nm and displayed low rates of reconstituted catalytic activities. However, cytochrome P-450B oxidized testosterone at several different sites including the 15 alpha position (0.07 nmol/min/nmol P-450). Both cytochromes P-450A and P-450B were distinct from the major benzo[a]pyrene hydroxylating form, cytochrome P-450E, by the criteria of spectroscopic properties, substrate profiles, minimum molecular weights on NaDodSO4-polyacrylamide gels, peptide mapping and lack of cross-reaction with antibody raised against cytochrome P-450E. Cytochrome P-450E shares epitopes with rat cytochrome P-450c indicating it is the equivalent enzyme, but possible homology between scup cytochromes P-450A or P-450B and known P-450 isozymes in other vertebrate groups is uncertain, although functional analogs exist.  相似文献   

16.
The kinetics of chromate reduction by liver microsomes isolated from rats pretreated with phenobarbital or 3-methylcholanthrene with NADPH or NADH cofactor have been followed. Induction of cytochrome P-450 and NADPH-cytochrome P-450 reductase activity in microsomes by phenobarbital pretreatment caused a decrease in the apparent chromate-enzyme dissociation constant, Km, and an increase in the apparent second-order rate constant, kcat/Km, but did not affect the kcat of NADPH-mediated microsomal metabolism of chromate. Induction of cytochrome P-448 in microsomes by 3-methylcholanthrene pretreatment did not affect the kinetics of NADPH-mediated reduction of chromate by microsomes. The kinetics of NADH-mediated microsomal chromate reduction were unaffected by the drug treatments. The effects of specific enzyme inhibitors on the kinetics of microsomal chromate reduction have been determined. 2'-AMP and 3-pyridinealdehyde-NAD, inhibitors of NADPH-cytochrome P-450 reductase and NADH-cytochrome b5 reductase, inhibited the rate of microsomal reduction of chromate with NADPH and NADH. Metyrapone and carbon monoxide, specific inhibitors of cytochrome P-450, inhibited the rate of NADPH-mediated microsomal reduction of chromate, whereas high concentrations of dimethyl-sulfoxide (0.5 M) enhanced the rate. These results suggest that the electron-transport cytochrome P-450 system is involved in the reduction of chromate by microsomal systems. The NADPH and NADH cofactors supply reducing equivalents ultimately to cytochrome P-450 which functions as a reductase in chromate metabolism. The lower oxidation state(s) produced upon chromate reduction may represent the ultimate carcinogenic form(s) of chromium. These studies provide evidence for the role of cytochrome P-450 in the activation of inorganic carcinogens.  相似文献   

17.
The relationships between structure and inhibitory potency toward microsomal cytochrome P-450 (P-450)-mediated androst-4-ene-3,17-dione hydroxylase activities were investigated in rat liver with a series of 5 alpha- and 5 beta-androstane derivatives. 5 beta-Reduced steroids (containing a cis-A/B ring junction) were more potent inhibitors than the 5 alpha-reduced epimers (containing a trans-A/B ring junction) except in the case of the 17 beta-hydroxy-substituted derivatives. The most effective inhibitor was 5 beta-androstane-3 beta-ol which exhibited I50 values of 7 and 27 microM against androstenedione 16 alpha- and 6 beta-hydroxylase activities, which are catalysed by P-450 IIC11 and IIIA2, respectively. In general, these two pathways of steroid hydroxylation were more susceptible to inhibition than the 7 alpha- and 16 beta-hydroxylase pathways. The 7 alpha-hydroxylase enzyme (P-450 IIA1) was only inhibited by 5 beta-reduced steroids that contained an oxygenated function at C17. All of the test compounds elicited type I spectral binding interactions with P-450 in oxidised microsomes. The most effective steroid inhibitors generally exhibited the greatest capacity to interact with P-450. Additional studies with one of the more potent compounds, 5 beta-androstane-3 beta-ol-17-one, revealed that the inhibition kinetics were competitive and that preincubation of the inhibitor with NADPH-supplemented microsomes prior to substrate (androstenedione) addition decreased the extent of inhibition observed. These findings are consistent with the assertion that the inhibition of hepatic steroid hydroxylases by 5 beta-androstanes involves an effective competitive interaction with the steroid substrate at the P-450 active site. Since the relative overproduction of 5 beta-reduced metabolites of certain androgens has been reported in clinical conditions, such as androgen insensitivity, it now appears important to investigate the hepatic drug oxidation capacity of patients with hormonal abnormalities.  相似文献   

18.
Two forms of cytochrome P-450 (P-450), designated P-450MP-1 and P-450MP-2, were purified to electrophoretic homogeneity from human liver microsomes on the basis of mephenytoin 4-hydroxylase activity. Purified P-450MP-1 and P-450MP-2 contained 12-17 nmol of P-450/mg of protein and had apparent monomeric molecular weights of 48,000 and 50,000, respectively. P-450MP-1 and P-450MP-2 were found to be very similar proteins as judged by chromatographic behavior on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE- and CM-cellulose columns, spectral properties, amino acid composition, peptide mapping, double immunodiffusion analysis, immunoinhibition, and N-terminal amino acid sequences. In vitro translation of liver RNA yielded polypeptides migrating with P-450MP-1 or P-450MP-2, depending upon which form was in each sample, indicating that the two P-450s are translated from different mRNAs. When reconsituted with NADPH-cytochrome-P-450 reductase and L-alpha-dilauroyl-sn-glyceryo-3-phosphocholine, P-450MP-1 and P-450MP-2 gave apparently higher turnover numbers for mephenytoin 4-hydroxylation than did the P-450 in the microsomes. The addition of purified rat or human cytochrome b5 to the reconstituted system caused a significant increase in the hydroxylation activity; the maximum stimulation was obtained when the molar ratio of cytochrome b5 to P-450 was 3-fold. Rabbit anti-human cytochrome b5 inhibited NADH-cytochrome-c reductase and S-mephenytoin 4-hydroxylase activities in human liver microsomes. In the presence of cytochrome b5, the Km value for S-mephenytoin was 1.25 mM with all five purified cytochrome P-450s preparations, and Vmax values were 0.8-1.25 nmol of 4-hydroxy product formed per min/nmol of P-450. P-450MP is a relatively selective P-450 form that metabolizes substituted hydantoins well. Reactions catalyzed by purified P-450MP-1 and P-450MP-2 preparations and inhibited by anti-P-450MP in human liver microsomes include S-mephenytoin 4-hydroxylation, S-nirvanol 4-hydroxylation, S-mephenytoin N-demethylation, and diphenylhydantoin 4-hydroxylation. Thus, at least two very similar forms of human P-450 are involved in S-mephenytoin 4-hydroxylation, an activity which shows genetic polymorphism.  相似文献   

19.
The modified vaccinia virus, T7-RNA-polymerase cDNA-expression system was used to express rat cytochrome P-450a. Various parameters such as host-cell type and density, and duration of infection were tested to optimize the level of expression of cytochrome P-450a enzyme activity. Cytochrome P-450a expressed from the cDNA sequence was exclusively incorporated into the membrane-containing portions of the cell lysates, as expected from its normal association in the liver endoplasmic reticulum. The enzyme displayed a carbon-monoxide-reduced-cytochrome-P-450a difference spectrum with a Soret maximum of 450 nm. Activity measurements revealed that cytochrome P-450a produced three metabolites of testosterone; 7 alpha-hydroxytestosterone and 6 alpha-hydroxytestosterone and delta 6-testosterone at a ratio of about 38:1:1. Under the appropriate conditions, the vaccinia-virus, T7-RNA-polymerase system produces high levels of a single form of cytochrome P-450 in cells that are virtually devoid of endogenous cytochrome P-450. Analysis of the cytochrome P-450 in its natural membrane-bound state, as opposed to artificial-lipid reconstitution studies of purified enzymes, allows accurate and confident measurements of substrate specificities.  相似文献   

20.
The microsomal fraction isolated from the testis of the urodele amphibian, Necturus maculosus, is very rich in cytochrome P-450 and three cytochrome P-450-dependent steroidogenic enzyme activities, 17 alpha-hydroxylase, C-17, 20-lyase, and aromatase. In this study, we investigated aspects of these reactions using both spectral and enzyme techniques. In animals obtained at different points in the annual cycle, Necturus testis microsomal P-450 concentrations ranged from 0.6-1.8 nmol/mg protein. Substrates for the three enzymes generated type I difference spectra; progesterone and 17 alpha-hydroxyprogesterone appeared to bind to one P-450 species while the aromatase substrates, androstenedione, 19-hydroxyandrostenedione, and testosterone, all bound to another P-450 species. Spectral binding constants (Ks) for these interactions were determined. Michaelis constants (Km) and maximum velocities were determined for progesterone 17 alpha-hydroxylation, 17 alpha-hydroxyprogesterone side-chain cleavage, and for the aromatization of androstenedione, 19-hydroxyandrostenedione, and testosterone. Measured either by spectral or kinetic methods, progesterone, androstenedione, and 19-hydroxyandrostenedione were high affinity substrates (Ks or Km less than 0.3 microM), while 17 alpha-hydroxyprogesterone and testosterone were low affinity substrates (Ks or Km = 0.6-4.8 microM). As evidence for the participation of cytochrome P-450 in these reactions, carbon monoxide was found to inhibit each of the enzyme activities studied. The activity of NADPH-cytochrome c reductase, a component of cytochrome P-450-dependent reactions, was also high in Necturus testis microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号